Spaces:
Sleeping
Sleeping
Create image_caption.py
Browse files- image_caption.py +103 -0
image_caption.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from pathlib import Path
|
3 |
+
import os
|
4 |
+
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import io
|
8 |
+
import google.generativeai as genai
|
9 |
+
|
10 |
+
class Caption:
|
11 |
+
def __init__(self):
|
12 |
+
|
13 |
+
self.api_key = 'AIzaSyAFG94rVbm9eWepO5uPGsMha8XJ-sHbMdA'
|
14 |
+
genai.configure(api_key=self.api_key)
|
15 |
+
self.model = genai.GenerativeModel(model_name="gemini-pro-vision")
|
16 |
+
# self.model = VisionEncoderDecoderModel.from_pretrained(
|
17 |
+
# "nlpconnect/vit-gpt2-image-captioning"
|
18 |
+
# )
|
19 |
+
# self.feature_extractor = ViTImageProcessor.from_pretrained(
|
20 |
+
# "nlpconnect/vit-gpt2-image-captioning"
|
21 |
+
# )
|
22 |
+
# self.tokenizer = AutoTokenizer.from_pretrained(
|
23 |
+
# "nlpconnect/vit-gpt2-image-captioning"
|
24 |
+
# )
|
25 |
+
|
26 |
+
# # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
+
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
+
# self.model.to(self.device)
|
29 |
+
# self.max_length = 16
|
30 |
+
# self.num_beams = 4
|
31 |
+
# self.gen_kwargs = {"max_length": self.max_length, "num_beams": self.num_beams}
|
32 |
+
|
33 |
+
|
34 |
+
def predict_step(self,image_paths):
|
35 |
+
images = []
|
36 |
+
|
37 |
+
for image_path in image_paths:
|
38 |
+
i_image = Image.open(image_path)
|
39 |
+
if i_image.mode != "RGB":
|
40 |
+
i_image = i_image.convert(mode="RGB")
|
41 |
+
|
42 |
+
images.append(i_image)
|
43 |
+
|
44 |
+
pixel_values = self.feature_extractor(images=images, return_tensors="pt").pixel_values
|
45 |
+
pixel_values = pixel_values.to(self.device)
|
46 |
+
|
47 |
+
output_ids = self.model.generate(pixel_values, **self.gen_kwargs)
|
48 |
+
|
49 |
+
preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
50 |
+
preds = [pred.strip() for pred in preds]
|
51 |
+
return preds
|
52 |
+
|
53 |
+
def predict_from_memory(self, image_buffers):
|
54 |
+
images = []
|
55 |
+
|
56 |
+
for image_buffer in image_buffers:
|
57 |
+
# Ensure the buffer is positioned at the start
|
58 |
+
if isinstance(image_buffer, io.BytesIO):
|
59 |
+
image_buffer.seek(0)
|
60 |
+
try:
|
61 |
+
i_image = Image.open(image_buffer)
|
62 |
+
if i_image.mode != "RGB":
|
63 |
+
i_image = i_image.convert("RGB")
|
64 |
+
images.append(i_image)
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Failed to process image buffer: {str(e)}")
|
67 |
+
continue
|
68 |
+
|
69 |
+
return self.process_images(images)
|
70 |
+
|
71 |
+
def process_images(self, images):
|
72 |
+
pixel_values = self.feature_extractor(images=images, return_tensors="pt").pixel_values
|
73 |
+
pixel_values = pixel_values.to(self.device)
|
74 |
+
output_ids = self.model.generate(pixel_values, **self.gen_kwargs)
|
75 |
+
preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
76 |
+
preds = [pred.strip() for pred in preds]
|
77 |
+
return preds
|
78 |
+
|
79 |
+
def predict_image_caption_gemini(self,img):
|
80 |
+
prompt = "Describe the main focus of this image in detail."
|
81 |
+
response = self.model.generate_content([prompt, img], stream=True)
|
82 |
+
response.resolve()
|
83 |
+
print("Derived data",response.text)
|
84 |
+
return response.text
|
85 |
+
|
86 |
+
def get_args(self):
|
87 |
+
parser = argparse.ArgumentParser()
|
88 |
+
parser.add_argument( "-i",
|
89 |
+
"--input_img_paths",
|
90 |
+
type=str,
|
91 |
+
default="farmer.jpg",
|
92 |
+
help="img for caption")
|
93 |
+
|
94 |
+
args = parser.parse_args()
|
95 |
+
|
96 |
+
return args
|
97 |
+
|
98 |
+
if __name__ == "__main__":
|
99 |
+
model = Caption()
|
100 |
+
args = model.get_args()
|
101 |
+
image_paths = []
|
102 |
+
image_paths.append(args.input_img_paths)
|
103 |
+
print(model.predict_step(image_paths))
|