arjunanand13 commited on
Commit
ef34b39
·
verified ·
1 Parent(s): 0068e69

Create image_caption.py

Browse files
Files changed (1) hide show
  1. image_caption.py +103 -0
image_caption.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from pathlib import Path
3
+ import os
4
+ from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
5
+ import torch
6
+ from PIL import Image
7
+ import io
8
+ import google.generativeai as genai
9
+
10
+ class Caption:
11
+ def __init__(self):
12
+
13
+ self.api_key = 'AIzaSyAFG94rVbm9eWepO5uPGsMha8XJ-sHbMdA'
14
+ genai.configure(api_key=self.api_key)
15
+ self.model = genai.GenerativeModel(model_name="gemini-pro-vision")
16
+ # self.model = VisionEncoderDecoderModel.from_pretrained(
17
+ # "nlpconnect/vit-gpt2-image-captioning"
18
+ # )
19
+ # self.feature_extractor = ViTImageProcessor.from_pretrained(
20
+ # "nlpconnect/vit-gpt2-image-captioning"
21
+ # )
22
+ # self.tokenizer = AutoTokenizer.from_pretrained(
23
+ # "nlpconnect/vit-gpt2-image-captioning"
24
+ # )
25
+
26
+ # # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
27
+ # self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
28
+ # self.model.to(self.device)
29
+ # self.max_length = 16
30
+ # self.num_beams = 4
31
+ # self.gen_kwargs = {"max_length": self.max_length, "num_beams": self.num_beams}
32
+
33
+
34
+ def predict_step(self,image_paths):
35
+ images = []
36
+
37
+ for image_path in image_paths:
38
+ i_image = Image.open(image_path)
39
+ if i_image.mode != "RGB":
40
+ i_image = i_image.convert(mode="RGB")
41
+
42
+ images.append(i_image)
43
+
44
+ pixel_values = self.feature_extractor(images=images, return_tensors="pt").pixel_values
45
+ pixel_values = pixel_values.to(self.device)
46
+
47
+ output_ids = self.model.generate(pixel_values, **self.gen_kwargs)
48
+
49
+ preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
50
+ preds = [pred.strip() for pred in preds]
51
+ return preds
52
+
53
+ def predict_from_memory(self, image_buffers):
54
+ images = []
55
+
56
+ for image_buffer in image_buffers:
57
+ # Ensure the buffer is positioned at the start
58
+ if isinstance(image_buffer, io.BytesIO):
59
+ image_buffer.seek(0)
60
+ try:
61
+ i_image = Image.open(image_buffer)
62
+ if i_image.mode != "RGB":
63
+ i_image = i_image.convert("RGB")
64
+ images.append(i_image)
65
+ except Exception as e:
66
+ print(f"Failed to process image buffer: {str(e)}")
67
+ continue
68
+
69
+ return self.process_images(images)
70
+
71
+ def process_images(self, images):
72
+ pixel_values = self.feature_extractor(images=images, return_tensors="pt").pixel_values
73
+ pixel_values = pixel_values.to(self.device)
74
+ output_ids = self.model.generate(pixel_values, **self.gen_kwargs)
75
+ preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
76
+ preds = [pred.strip() for pred in preds]
77
+ return preds
78
+
79
+ def predict_image_caption_gemini(self,img):
80
+ prompt = "Describe the main focus of this image in detail."
81
+ response = self.model.generate_content([prompt, img], stream=True)
82
+ response.resolve()
83
+ print("Derived data",response.text)
84
+ return response.text
85
+
86
+ def get_args(self):
87
+ parser = argparse.ArgumentParser()
88
+ parser.add_argument( "-i",
89
+ "--input_img_paths",
90
+ type=str,
91
+ default="farmer.jpg",
92
+ help="img for caption")
93
+
94
+ args = parser.parse_args()
95
+
96
+ return args
97
+
98
+ if __name__ == "__main__":
99
+ model = Caption()
100
+ args = model.get_args()
101
+ image_paths = []
102
+ image_paths.append(args.input_img_paths)
103
+ print(model.predict_step(image_paths))