Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
79c5088
0
Parent(s):
code added
Browse files- .gitattributes +37 -0
- .gitignore +13 -0
- README.md +14 -0
- app.py +207 -0
- assets/bear.png +3 -0
- assets/cat.jpg +3 -0
- assets/dog.png +3 -0
- assets/white_cat.png +3 -0
- main.py +126 -0
- model/__init__.py +5 -0
- model/directional_attentions.py +478 -0
- model/modules/dift_utils.py +262 -0
- model/modules/freq_filters.py +173 -0
- model/modules/new_object_detection.py +187 -0
- model/modules/register_attention.py +77 -0
- model/pipeline_sdxl.py +1440 -0
- model/unet_sdxl.py +381 -0
- requirements.txt +15 -0
- src/__init__.py +1 -0
- src/ddpm_inversion.py +222 -0
- src/ddpm_step.py +70 -0
- utils/__init__.py +3 -0
- utils/args.py +65 -0
- utils/dino_utils.py +38 -0
- utils/general_utils.py +155 -0
- utils/pipeline_utils.py +148 -0
- utils/utils.py +129 -0
- visualization/__init__.py +1 -0
- visualization/draw_box.py +44 -0
- visualization/image_utils.py +106 -0
.gitattributes
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ViT-L-14.pt
|
2 |
+
*.png
|
3 |
+
*.jpg
|
4 |
+
*.jpeg
|
5 |
+
./output/
|
6 |
+
./output_old/
|
7 |
+
./metrics/
|
8 |
+
./dataset/
|
9 |
+
__pycache__/
|
10 |
+
./met/*
|
11 |
+
*.csv
|
12 |
+
./.idea/
|
13 |
+
./.gradio/
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Cora
|
3 |
+
emoji: 🖼️
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.26.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
short_description: Demo for Cora. Our few-step image editing method
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from utils.pipeline_utils import *
|
10 |
+
from utils import get_args
|
11 |
+
|
12 |
+
from main import run
|
13 |
+
|
14 |
+
pipeline = None
|
15 |
+
|
16 |
+
|
17 |
+
def get_pipeline():
|
18 |
+
global pipeline
|
19 |
+
if pipeline is None:
|
20 |
+
pipeline = load_pipeline(fp16=False, cache_dir=None)
|
21 |
+
return pipeline
|
22 |
+
|
23 |
+
|
24 |
+
def process_masks(masks):
|
25 |
+
# masks: list of file paths
|
26 |
+
processed_masks = []
|
27 |
+
mask_composit = torch.zeros((512, 512), dtype=torch.float32, device='cuda')
|
28 |
+
for mask_path in masks:
|
29 |
+
mask = Image.open(mask_path).convert("L").resize((512, 512))
|
30 |
+
mask = torch.tensor(np.array(mask), dtype=torch.float32, device='cuda')
|
31 |
+
mask[mask > 0] = 255.0
|
32 |
+
mask = mask / 255.0
|
33 |
+
processed_masks.append(mask)
|
34 |
+
mask_composit += mask
|
35 |
+
mask_composit = torch.clamp(mask_composit, 0, 1)
|
36 |
+
mask_composit = F.interpolate(mask_composit[None, None, :, :], size=(64, 64), mode="nearest")[0, 0]
|
37 |
+
if mask_composit.sum() == 0:
|
38 |
+
mask_composit = None
|
39 |
+
|
40 |
+
return mask_composit
|
41 |
+
|
42 |
+
|
43 |
+
@spaces.GPU
|
44 |
+
def main_pipeline(
|
45 |
+
input_image: str,
|
46 |
+
src_prompt: str,
|
47 |
+
tgt_prompt: str,
|
48 |
+
alpha: float,
|
49 |
+
beta: float,
|
50 |
+
w1: float,
|
51 |
+
seed: int,
|
52 |
+
dift_correction: bool = True,
|
53 |
+
):
|
54 |
+
args = get_args()
|
55 |
+
pipeline = get_pipeline()
|
56 |
+
|
57 |
+
args.alpha = alpha
|
58 |
+
args.beta = beta
|
59 |
+
args.w1 = w1
|
60 |
+
args.seed = seed
|
61 |
+
args.structural_alignment = True
|
62 |
+
args.support_new_object = True
|
63 |
+
args.apply_dift_correction = dift_correction
|
64 |
+
torch.cuda.empty_cache()
|
65 |
+
res_image = run(input_image['background'], src_prompt, tgt_prompt, masks=process_masks(input_image['layers']),
|
66 |
+
pipeline=pipeline, args=args)[2]
|
67 |
+
|
68 |
+
return res_image
|
69 |
+
|
70 |
+
|
71 |
+
DESCRIPTION = """# Cora 🖼️🐱🦅
|
72 |
+
## Fast & Controllable Image Editing
|
73 |
+
|
74 |
+
### 🛠️ Quick start
|
75 |
+
1. **Upload** or drag-and-drop the image you’d like to edit.
|
76 |
+
2. **Source prompt** – describe what’s in the original image.
|
77 |
+
3. **Target prompt** – describe the result you want.
|
78 |
+
4. Adjust the parameters as needed.
|
79 |
+
5. *(Optional)* Paint a mask to specify the area to edit.
|
80 |
+
6. Click **Edit** and wait a few seconds for the output.
|
81 |
+
|
82 |
+
### ⚙️ Parameter cheat-sheet
|
83 |
+
|
84 |
+
| Parameter | What it does | `0` (minimum) | `1` (maximum) |
|
85 |
+
|-----------|--------------|---------------|---------------|
|
86 |
+
| **alpha** | Appearance transfer control | preserve source appearance | target prompt affects appearance |
|
87 |
+
| **beta** | Structural change control | preserve original structure | full layout change |
|
88 |
+
| **w** | Prompt strength | subtle tweaks | strong changes |
|
89 |
+
| **Seed** | Fixes randomness for reproducibility | – | – |
|
90 |
+
| **Apply correspondence correction** | Uses correspondence-aware latent fix | – | – |
|
91 |
+
|
92 |
+
### 📜 Tips
|
93 |
+
- To replicate **TurboEdit**, set **alpha = 1**, **beta = 1**, and turn **off** *Apply correspondence correction*.
|
94 |
+
- To test reconstruction quality of the inversion, use identical source & target prompts with **alpha = 1** and **beta = 1**.
|
95 |
+
#### 🙏 Acknowledgements
|
96 |
+
The demo template is largely adapted from **[TurboEdit on Hugging Face Spaces](https://huggingface.co/spaces/turboedit/turbo_edit)**.
|
97 |
+
"""
|
98 |
+
|
99 |
+
with gr.Blocks(css="app/style.css") as demo:
|
100 |
+
gr.HTML(
|
101 |
+
"""<a href="https://huggingface.co/spaces/armikaeili/cora?duplicate=true">
|
102 |
+
<img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space to run privately without waiting in queue"""
|
103 |
+
)
|
104 |
+
gr.Markdown(DESCRIPTION)
|
105 |
+
|
106 |
+
with gr.Row():
|
107 |
+
with gr.Column():
|
108 |
+
input_image = gr.ImageMask(
|
109 |
+
label="Input image", type="filepath", height=512, width=512, brush=gr.Brush(color_mode='defaults')
|
110 |
+
)
|
111 |
+
result = gr.Image(label="Result", type="pil", height=512, width=512)
|
112 |
+
with gr.Column():
|
113 |
+
src_prompt = gr.Text(
|
114 |
+
label="Source Prompt",
|
115 |
+
max_lines=1,
|
116 |
+
placeholder="Source Prompt",
|
117 |
+
)
|
118 |
+
tgt_prompt = gr.Text(
|
119 |
+
label="Target Prompt",
|
120 |
+
max_lines=1,
|
121 |
+
placeholder="Target Prompt",
|
122 |
+
)
|
123 |
+
with gr.Accordion("Advanced Options", open=False):
|
124 |
+
seed = gr.Slider(
|
125 |
+
label="seed", minimum=0, maximum=16 * 1024, value=200, step=1
|
126 |
+
)
|
127 |
+
w1 = gr.Slider(
|
128 |
+
label="w", minimum=1.0, maximum=3.0, value=1.9, step=0.05
|
129 |
+
)
|
130 |
+
alpha = gr.Slider(
|
131 |
+
label="alpha", minimum=0, maximum=1, value=0, step=0.01
|
132 |
+
)
|
133 |
+
beta = gr.Slider(
|
134 |
+
label="beta", minimum=0, maximum=1, value=0.04, step=0.01
|
135 |
+
)
|
136 |
+
with gr.Row():
|
137 |
+
dift_correction = gr.Checkbox(
|
138 |
+
label="Apply correspondence correction",
|
139 |
+
value=True)
|
140 |
+
run_button = gr.Button("Edit")
|
141 |
+
|
142 |
+
examples = [
|
143 |
+
[
|
144 |
+
"assets/white_cat.png", # input_image
|
145 |
+
"a cat", # src_prompt
|
146 |
+
"a cat wearing a suit", # tgt_prompt
|
147 |
+
0.1, # alpha
|
148 |
+
0.1, # beta
|
149 |
+
1.9, # w1
|
150 |
+
7, # seed
|
151 |
+
True # dift_correction
|
152 |
+
],
|
153 |
+
[
|
154 |
+
"assets/bear.png", # input_image
|
155 |
+
"a sitting brown bear", # src_prompt
|
156 |
+
"a roaring blue bear", # tgt_prompt
|
157 |
+
0.7, # alpha
|
158 |
+
0.1, # beta
|
159 |
+
1.9, # w1
|
160 |
+
7, # seed
|
161 |
+
True # dift_correction
|
162 |
+
],
|
163 |
+
[
|
164 |
+
"assets/cat.jpg", # input_image
|
165 |
+
"a cat", # src_prompt
|
166 |
+
"an eagle", # tgt_prompt
|
167 |
+
0.7, # alpha
|
168 |
+
0.3, # beta
|
169 |
+
1.9, # w1
|
170 |
+
7, # seed
|
171 |
+
True # dift_correction
|
172 |
+
],
|
173 |
+
[
|
174 |
+
"assets/dog.png", # input_image
|
175 |
+
"a photo of a dog", # src_prompt
|
176 |
+
"a photo of a dog lying", # tgt_prompt
|
177 |
+
0.0, # alpha
|
178 |
+
1, # beta
|
179 |
+
1.9, # w1
|
180 |
+
7, # seed
|
181 |
+
True # dift_correction
|
182 |
+
],
|
183 |
+
|
184 |
+
]
|
185 |
+
|
186 |
+
inputs = [
|
187 |
+
input_image,
|
188 |
+
src_prompt,
|
189 |
+
tgt_prompt,
|
190 |
+
alpha,
|
191 |
+
beta,
|
192 |
+
w1,
|
193 |
+
seed,
|
194 |
+
dift_correction
|
195 |
+
]
|
196 |
+
outputs = [result]
|
197 |
+
#
|
198 |
+
gr.Examples(
|
199 |
+
examples=examples,
|
200 |
+
inputs=inputs,
|
201 |
+
outputs=outputs,
|
202 |
+
fn=main_pipeline,
|
203 |
+
cache_examples=False,
|
204 |
+
)
|
205 |
+
|
206 |
+
run_button.click(fn=main_pipeline, inputs=inputs, outputs=outputs)
|
207 |
+
demo.queue(max_size=50).launch(share=False)
|
assets/bear.png
ADDED
![]() |
Git LFS Details
|
assets/cat.jpg
ADDED
![]() |
Git LFS Details
|
assets/dog.png
ADDED
![]() |
Git LFS Details
|
assets/white_cat.png
ADDED
![]() |
Git LFS Details
|
main.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import jsonc as json
|
5 |
+
|
6 |
+
from model import (
|
7 |
+
DirectionalAttentionControl,
|
8 |
+
StableDiffusionXLImg2ImgPipeline,
|
9 |
+
register_attention_editor_diffusers,
|
10 |
+
)
|
11 |
+
|
12 |
+
from utils.pipeline_utils import *
|
13 |
+
from utils import get_args, extract_mask
|
14 |
+
from src import get_ddpm_inversion_scheduler
|
15 |
+
from visualization import save_results
|
16 |
+
|
17 |
+
|
18 |
+
def run(
|
19 |
+
image_path,
|
20 |
+
src_prompt,
|
21 |
+
tgt_prompt,
|
22 |
+
masks,
|
23 |
+
pipeline: StableDiffusionXLImg2ImgPipeline,
|
24 |
+
args,
|
25 |
+
):
|
26 |
+
seed = args.seed
|
27 |
+
num_timesteps = args.timesteps
|
28 |
+
torch.manual_seed(seed)
|
29 |
+
generator = torch.Generator(device=SAMPLING_DEVICE).manual_seed(seed)
|
30 |
+
|
31 |
+
timesteps, config = set_pipeline(pipeline, num_timesteps, generator, args)
|
32 |
+
|
33 |
+
x_0_image = Image.open(image_path).convert("RGB").resize((512, 512), RESIZE_TYPE)
|
34 |
+
x_0 = encode_image(x_0_image, pipeline, generator)
|
35 |
+
x_ts = create_xts(
|
36 |
+
config.noise_shift_delta,
|
37 |
+
config.noise_timesteps,
|
38 |
+
generator,
|
39 |
+
pipeline.scheduler,
|
40 |
+
timesteps,
|
41 |
+
x_0,
|
42 |
+
)
|
43 |
+
x_ts = [xt.to(dtype=x_0.dtype) for xt in x_ts]
|
44 |
+
latents = [x_ts[0]]
|
45 |
+
|
46 |
+
if not isinstance(masks, torch.Tensor):
|
47 |
+
mask = extract_mask(masks, 512, 512)
|
48 |
+
else:
|
49 |
+
mask = masks
|
50 |
+
|
51 |
+
pipeline.scheduler = get_ddpm_inversion_scheduler(
|
52 |
+
pipeline.scheduler,
|
53 |
+
config,
|
54 |
+
timesteps,
|
55 |
+
latents,
|
56 |
+
x_ts,
|
57 |
+
w1=args.w1,
|
58 |
+
dift_timestep=args.dift_timestep,
|
59 |
+
movement_intensifier=args.movement_intensifier,
|
60 |
+
apply_dift_correction=args.apply_dift_correction,
|
61 |
+
mask=mask,
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
step, layer = 0, 44
|
66 |
+
editor = DirectionalAttentionControl(
|
67 |
+
step, layer, total_steps=11,
|
68 |
+
model_type="SDXL",
|
69 |
+
alpha=args.alpha, mode=args.mode, beta=1-args.beta,
|
70 |
+
structural_alignment=args.structural_alignment,
|
71 |
+
support_new_object=args.support_new_object
|
72 |
+
)
|
73 |
+
register_attention_editor_diffusers(pipeline, editor)
|
74 |
+
|
75 |
+
latent = latents[0].expand(3, -1, -1, -1)
|
76 |
+
prompt = [src_prompt, src_prompt, tgt_prompt]
|
77 |
+
pipeline.unet.latent_store.reset()
|
78 |
+
image = pipeline.__call__(image=latent, prompt=prompt).images
|
79 |
+
return [x_0_image, image[0], image[2]]
|
80 |
+
|
81 |
+
|
82 |
+
if __name__ == "__main__":
|
83 |
+
args = get_args()
|
84 |
+
|
85 |
+
img_paths_to_prompts = json.load(open(args.prompts_file, "r"))
|
86 |
+
eval_dataset_folder = args.eval_dataset_folder
|
87 |
+
|
88 |
+
img_paths = [
|
89 |
+
f"{eval_dataset_folder}/{img_name}" for img_name in img_paths_to_prompts.keys()
|
90 |
+
]
|
91 |
+
pipeline = load_pipeline(args.fp16, args.cache_dir)
|
92 |
+
|
93 |
+
sim_scores_total = 0
|
94 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
95 |
+
|
96 |
+
images_to_plot = []
|
97 |
+
output_dir = args.output_dir
|
98 |
+
|
99 |
+
for i, img_path in enumerate(img_paths):
|
100 |
+
args.img_path = img_path
|
101 |
+
img_name = img_path.split("/")[-1]
|
102 |
+
prompt = img_paths_to_prompts[img_name]["src_prompt"]
|
103 |
+
edit_prompts = img_paths_to_prompts[img_name]["tgt_prompt"]
|
104 |
+
args.alpha = img_paths_to_prompts[img_name].get("alpha", 0.7)
|
105 |
+
args.beta = img_paths_to_prompts[img_name].get("beta", 1)
|
106 |
+
masks = img_paths_to_prompts[img_name].get("masks", None)
|
107 |
+
args.mask = masks
|
108 |
+
args.source_prompt = prompt
|
109 |
+
args.target_prompt = edit_prompts[0]
|
110 |
+
|
111 |
+
res = run(
|
112 |
+
img_path,
|
113 |
+
prompt,
|
114 |
+
edit_prompts[0],
|
115 |
+
masks,
|
116 |
+
pipeline=pipeline,
|
117 |
+
args=args,
|
118 |
+
)
|
119 |
+
|
120 |
+
torch.cuda.empty_cache()
|
121 |
+
save_results(
|
122 |
+
args=args,
|
123 |
+
source_prompt=prompt,
|
124 |
+
target_prompt=edit_prompts[0],
|
125 |
+
images=res
|
126 |
+
)
|
model/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .directional_attentions import DirectionalAttentionControl
|
2 |
+
from .modules.register_attention import register_attention_editor_diffusers
|
3 |
+
from .pipeline_sdxl import StableDiffusionXLImg2ImgPipeline
|
4 |
+
from .modules.dift_utils import gen_nn_map
|
5 |
+
from .modules.freq_filters import freq_exp
|
model/directional_attentions.py
ADDED
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import ctypes
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
from scipy.optimize import linear_sum_assignment
|
8 |
+
from typing import Optional, Union, Tuple, List, Callable, Dict
|
9 |
+
|
10 |
+
from model.modules.dift_utils import gen_nn_map
|
11 |
+
|
12 |
+
|
13 |
+
class AttentionBase:
|
14 |
+
def __init__(self):
|
15 |
+
self.cur_step = 0
|
16 |
+
self.num_att_layers = -1
|
17 |
+
self.cur_att_layer = 0
|
18 |
+
|
19 |
+
def after_step(self):
|
20 |
+
pass
|
21 |
+
|
22 |
+
def __call__(
|
23 |
+
self,
|
24 |
+
q: torch.Tensor,
|
25 |
+
k: torch.Tensor,
|
26 |
+
v: torch.Tensor,
|
27 |
+
sim: torch.Tensor,
|
28 |
+
attn: torch.Tensor,
|
29 |
+
is_cross: bool,
|
30 |
+
place_in_unet: str,
|
31 |
+
num_heads: int,
|
32 |
+
**kwargs
|
33 |
+
) -> torch.Tensor:
|
34 |
+
out = self.forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
|
35 |
+
|
36 |
+
self.cur_att_layer += 1
|
37 |
+
if self.cur_att_layer == self.num_att_layers:
|
38 |
+
self.cur_att_layer = 0
|
39 |
+
self.cur_step += 1
|
40 |
+
self.after_step()
|
41 |
+
|
42 |
+
return out
|
43 |
+
|
44 |
+
def forward(
|
45 |
+
self,
|
46 |
+
q: torch.Tensor,
|
47 |
+
k: torch.Tensor,
|
48 |
+
v: torch.Tensor,
|
49 |
+
sim: torch.Tensor,
|
50 |
+
attn: torch.Tensor,
|
51 |
+
is_cross: bool,
|
52 |
+
place_in_unet: str,
|
53 |
+
num_heads: int,
|
54 |
+
**kwargs
|
55 |
+
) -> torch.Tensor:
|
56 |
+
out = torch.einsum('b i j, b j d -> b i d', attn, v)
|
57 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=num_heads)
|
58 |
+
return out
|
59 |
+
|
60 |
+
def reset(self):
|
61 |
+
self.cur_step = 0
|
62 |
+
self.cur_att_layer = 0
|
63 |
+
|
64 |
+
class DirectionalAttentionControl(AttentionBase):
|
65 |
+
MODEL_TYPE = {"SD": 16, "SDXL": 70}
|
66 |
+
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
start_step: int = 4,
|
70 |
+
start_layer: int = 10,
|
71 |
+
layer_idx: Optional[List[int]] = None,
|
72 |
+
step_idx: Optional[List[int]] = None,
|
73 |
+
total_steps: int = 50,
|
74 |
+
model_type: str = "SD",
|
75 |
+
**kwargs
|
76 |
+
):
|
77 |
+
super().__init__()
|
78 |
+
self.total_steps = total_steps
|
79 |
+
self.total_layers = self.MODEL_TYPE.get(model_type, 16)
|
80 |
+
self.start_step = start_step
|
81 |
+
self.start_layer = start_layer
|
82 |
+
self.layer_idx = layer_idx if layer_idx is not None else list(range(start_layer, self.total_layers))
|
83 |
+
self.step_idx = step_idx if step_idx is not None else list(range(start_step, total_steps))
|
84 |
+
|
85 |
+
self.w = 1.0
|
86 |
+
self.structural_alignment = kwargs.get("structural_alignment", False)
|
87 |
+
self.style_transfer_only = kwargs.get("style_transfer_only", False)
|
88 |
+
self.alpha = kwargs.get("alpha", 0.5)
|
89 |
+
self.beta = kwargs.get("beta", 0.5)
|
90 |
+
self.newness = kwargs.get("support_new_object", True)
|
91 |
+
self.mode = kwargs.get("mode", "normal")
|
92 |
+
|
93 |
+
def forward(
|
94 |
+
self,
|
95 |
+
q: torch.Tensor,
|
96 |
+
k: torch.Tensor,
|
97 |
+
v: torch.Tensor,
|
98 |
+
sim: torch.Tensor,
|
99 |
+
attn: torch.Tensor,
|
100 |
+
is_cross: bool,
|
101 |
+
place_in_unet: str,
|
102 |
+
num_heads: int,
|
103 |
+
**kwargs
|
104 |
+
) -> torch.Tensor:
|
105 |
+
if is_cross or self.cur_step not in self.step_idx or self.cur_att_layer // 2 not in self.layer_idx:
|
106 |
+
return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
|
107 |
+
|
108 |
+
q_s, q_middle, q_t = q.chunk(3)
|
109 |
+
k_s, k_middle, k_t = k.chunk(3)
|
110 |
+
v_s, v_middle, v_t = v.chunk(3)
|
111 |
+
attn_s, attn_middle, attn_t = attn.chunk(3)
|
112 |
+
|
113 |
+
out_s = self.attn_batch(q_s, k_s, v_s, sim, attn_s, is_cross, place_in_unet, num_heads, **kwargs)
|
114 |
+
out_middle = self.attn_batch(q_middle, k_middle, v_middle, sim, attn_middle, is_cross, place_in_unet, num_heads, **kwargs)
|
115 |
+
|
116 |
+
if self.cur_step <= 0 and self.beta > 0 and \
|
117 |
+
self.structural_alignment:
|
118 |
+
q_t = self.align_queries_via_matching(q_s, q_t, beta=self.beta)
|
119 |
+
|
120 |
+
out_t = self.apply_mode(q_t, k_s, k_t, v_s, v_t, attn_t, sim, is_cross, place_in_unet, num_heads, **kwargs)
|
121 |
+
|
122 |
+
out = torch.cat([out_s, out_middle, out_t], dim=0)
|
123 |
+
return out
|
124 |
+
|
125 |
+
def apply_mode(
|
126 |
+
self,
|
127 |
+
q_t: torch.Tensor,
|
128 |
+
k_s: torch.Tensor,
|
129 |
+
k_t: torch.Tensor,
|
130 |
+
v_s: torch.Tensor,
|
131 |
+
v_t: torch.Tensor,
|
132 |
+
attn_t: torch.Tensor,
|
133 |
+
sim: torch.Tensor,
|
134 |
+
is_cross: bool,
|
135 |
+
place_in_unet: str,
|
136 |
+
num_heads: int,
|
137 |
+
**kwargs
|
138 |
+
) -> torch.Tensor:
|
139 |
+
mode = self.mode
|
140 |
+
|
141 |
+
if 'dift' in mode and self.cur_step <= 0:
|
142 |
+
mode = 'normal'
|
143 |
+
|
144 |
+
if mode == "concat":
|
145 |
+
out_t = self.attn_batch(
|
146 |
+
q_t, torch.cat([k_s, 0.85 * k_t]), torch.cat([v_s, v_t]),
|
147 |
+
sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs
|
148 |
+
)
|
149 |
+
|
150 |
+
elif mode == "concat_dift":
|
151 |
+
updated_k_s, updated_v_s, _ = self.process_dift_features(kwargs.get("dift_features"), k_s, k_t, v_s, v_t)
|
152 |
+
out_t = self.attn_batch(
|
153 |
+
q_t, torch.cat([updated_k_s, k_t]), torch.cat([updated_v_s, v_t]),
|
154 |
+
sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs
|
155 |
+
)
|
156 |
+
|
157 |
+
elif mode == "masa":
|
158 |
+
out_t = self.attn_batch(q_t, k_s, v_s, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
|
159 |
+
|
160 |
+
elif mode == "normal":
|
161 |
+
out_t = self.attn_batch(q_t, k_t, v_t, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
|
162 |
+
|
163 |
+
elif mode == "lerp":
|
164 |
+
time = self.alpha
|
165 |
+
k_lerp = k_s + time * (k_t - k_s)
|
166 |
+
v_lerp = v_s + time * (v_t - v_s)
|
167 |
+
out_t = self.attn_batch(q_t, k_lerp, v_lerp, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
|
168 |
+
|
169 |
+
elif mode == "lerp_dift":
|
170 |
+
updated_k_s, updated_v_s, newness = self.process_dift_features(
|
171 |
+
kwargs.get("dift_features"), k_s, k_t, v_s, v_t, return_newness=self.newness
|
172 |
+
)
|
173 |
+
out_t = self.apply_lerp_dift(q_t, k_s, k_t, v_s, v_t, updated_k_s, updated_v_s, newness, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
|
174 |
+
|
175 |
+
elif mode in ("slerp", "log_slerp"):
|
176 |
+
time = self.alpha
|
177 |
+
k_slerp = self.slerp_fixed_length_batch(k_s, k_t, t=time)
|
178 |
+
v_slerp = self.slerp_batch(v_s, v_t, t=time, log_slerp="log" in mode)
|
179 |
+
out_t = self.attn_batch(q_t, k_slerp, v_slerp, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
|
180 |
+
|
181 |
+
elif mode in ("slerp_dift", "log_slerp_dift"):
|
182 |
+
out_t = self.apply_slerp_dift(q_t, k_s, k_t, v_s, v_t, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
|
183 |
+
|
184 |
+
else:
|
185 |
+
out_t = self.attn_batch(q_t, k_t, v_t, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
|
186 |
+
|
187 |
+
return out_t
|
188 |
+
|
189 |
+
def attn_batch(
|
190 |
+
self,
|
191 |
+
q: torch.Tensor,
|
192 |
+
k: torch.Tensor,
|
193 |
+
v: torch.Tensor,
|
194 |
+
sim: torch.Tensor,
|
195 |
+
attn: torch.Tensor,
|
196 |
+
is_cross: bool,
|
197 |
+
place_in_unet: str,
|
198 |
+
num_heads: int,
|
199 |
+
**kwargs
|
200 |
+
) -> torch.Tensor:
|
201 |
+
b = q.shape[0] // num_heads
|
202 |
+
q = rearrange(q, "(b h) n d -> h (b n) d", h=num_heads)
|
203 |
+
k = rearrange(k, "(b h) n d -> h (b n) d", h=num_heads)
|
204 |
+
v = rearrange(v, "(b h) n d -> h (b n) d", h=num_heads)
|
205 |
+
|
206 |
+
scale = kwargs.get("scale", 1.0)
|
207 |
+
sim_batched = torch.einsum("h i d, h j d -> h i j", q, k) * scale
|
208 |
+
attn_batched = sim_batched.softmax(-1)
|
209 |
+
|
210 |
+
out = torch.einsum("h i j, h j d -> h i d", attn_batched, v)
|
211 |
+
out = rearrange(out, "h (b n) d -> b n (h d)", b=b)
|
212 |
+
return out
|
213 |
+
|
214 |
+
def slerp(self, x: torch.Tensor, y: torch.Tensor, t: float = 0.5) -> torch.Tensor:
|
215 |
+
x_norm = x.norm(p=2)
|
216 |
+
y_norm = y.norm(p=2)
|
217 |
+
if y_norm < 1e-12:
|
218 |
+
return x
|
219 |
+
|
220 |
+
y_normalized = y / y_norm
|
221 |
+
y_same_length = y_normalized * x_norm
|
222 |
+
dot_xy = (x * y_same_length).sum()
|
223 |
+
cos_theta = torch.clamp(dot_xy / (x_norm * x_norm), -1.0, 1.0)
|
224 |
+
theta = torch.acos(cos_theta)
|
225 |
+
if torch.isclose(theta, torch.tensor(0.0)):
|
226 |
+
return x
|
227 |
+
|
228 |
+
sin_theta = torch.sin(theta)
|
229 |
+
s1 = torch.sin((1.0 - t) * theta) / sin_theta
|
230 |
+
s2 = torch.sin(t * theta) / sin_theta
|
231 |
+
return s1 * x + s2 * y_same_length
|
232 |
+
|
233 |
+
def slerp_batch(
|
234 |
+
self,
|
235 |
+
x: torch.Tensor,
|
236 |
+
y: torch.Tensor,
|
237 |
+
t: float = 0.5,
|
238 |
+
eps: float = 1e-12,
|
239 |
+
log_slerp: bool = False
|
240 |
+
) -> torch.Tensor:
|
241 |
+
"""
|
242 |
+
Variation of SLERP for batches that allows for linear or logarithmic interpolation of magnitudes.
|
243 |
+
"""
|
244 |
+
x_norm = x.norm(p=2, dim=-1, keepdim=True)
|
245 |
+
y_norm = y.norm(p=2, dim=-1, keepdim=True)
|
246 |
+
y_zero_mask = (y_norm < eps)
|
247 |
+
|
248 |
+
x_unit = x / (x_norm + eps)
|
249 |
+
y_unit = y / (y_norm + eps)
|
250 |
+
dot_xy = (x_unit * y_unit).sum(dim=-1, keepdim=True)
|
251 |
+
cos_theta = torch.clamp(dot_xy, -1.0, 1.0)
|
252 |
+
|
253 |
+
theta = torch.acos(cos_theta)
|
254 |
+
sin_theta = torch.sin(theta)
|
255 |
+
theta_zero_mask = (theta.abs() < 1e-7)
|
256 |
+
|
257 |
+
sin_theta_safe = torch.where(sin_theta.abs() < eps, torch.ones_like(sin_theta), sin_theta)
|
258 |
+
s1 = torch.sin((1.0 - t) * theta) / sin_theta_safe
|
259 |
+
s2 = torch.sin(t * theta) / sin_theta_safe
|
260 |
+
dir_interp = s1 * x_unit + s2 * y_unit
|
261 |
+
|
262 |
+
if not log_slerp:
|
263 |
+
mag_interp = (1.0 - t) * x_norm + t * y_norm
|
264 |
+
else:
|
265 |
+
mag_interp = (x_norm ** (1.0 - t)) * (y_norm ** t)
|
266 |
+
|
267 |
+
out = mag_interp * dir_interp
|
268 |
+
out = torch.where(y_zero_mask | theta_zero_mask, x, out)
|
269 |
+
return out
|
270 |
+
|
271 |
+
|
272 |
+
def slerp_fixed_length_batch(
|
273 |
+
self,
|
274 |
+
x: torch.Tensor,
|
275 |
+
y: torch.Tensor,
|
276 |
+
t: float = 0.5,
|
277 |
+
eps: float = 1e-12
|
278 |
+
) -> torch.Tensor:
|
279 |
+
"""
|
280 |
+
performing SLERP while preserving the norm of the source tensor x
|
281 |
+
"""
|
282 |
+
x_norm = x.norm(p=2, dim=-1, keepdim=True)
|
283 |
+
y_norm = y.norm(p=2, dim=-1, keepdim=True)
|
284 |
+
y_zero_mask = (y_norm < eps)
|
285 |
+
y_normalized = y / (y_norm + eps)
|
286 |
+
y_same_length = y_normalized * x_norm
|
287 |
+
dot_xy = (x * y_same_length).sum(dim=-1, keepdim=True)
|
288 |
+
cos_theta = torch.clamp(dot_xy / (x_norm * x_norm + eps), -1.0, 1.0)
|
289 |
+
theta = torch.acos(cos_theta)
|
290 |
+
sin_theta = torch.sin(theta)
|
291 |
+
|
292 |
+
sin_theta_safe = torch.where(sin_theta.abs() < eps, torch.ones_like(sin_theta), sin_theta)
|
293 |
+
s1 = torch.sin((1.0 - t) * theta) / sin_theta_safe
|
294 |
+
s2 = torch.sin(t * theta) / sin_theta_safe
|
295 |
+
out = s1 * x + s2 * y_same_length
|
296 |
+
theta_zero_mask = (theta.abs() < 1e-7)
|
297 |
+
|
298 |
+
out = torch.where(y_zero_mask | theta_zero_mask, x, out)
|
299 |
+
return out
|
300 |
+
|
301 |
+
def apply_lerp_dift(
|
302 |
+
self,
|
303 |
+
q_t: torch.Tensor,
|
304 |
+
k_s: torch.Tensor,
|
305 |
+
k_t: torch.Tensor,
|
306 |
+
v_s: torch.Tensor,
|
307 |
+
v_t: torch.Tensor,
|
308 |
+
updated_k_s: torch.Tensor,
|
309 |
+
updated_v_s: torch.Tensor,
|
310 |
+
newness: torch.Tensor,
|
311 |
+
sim: torch.Tensor,
|
312 |
+
attn_t: torch.Tensor,
|
313 |
+
is_cross: bool,
|
314 |
+
place_in_unet: str,
|
315 |
+
num_heads: int,
|
316 |
+
**kwargs
|
317 |
+
) -> torch.Tensor:
|
318 |
+
alpha = self.alpha
|
319 |
+
k_lerp = k_s + alpha * (k_t - k_s)
|
320 |
+
v_lerp = v_s + alpha * (v_t - v_s)
|
321 |
+
if alpha > 0:
|
322 |
+
k_t_new = newness * k_t + (1 - newness) * k_lerp
|
323 |
+
v_t_new = newness * v_t + (1 - newness) * v_lerp
|
324 |
+
else:
|
325 |
+
k_t_new = k_s
|
326 |
+
v_t_new = v_s
|
327 |
+
|
328 |
+
out_t = self.attn_batch(q_t, k_t_new, v_t_new, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
|
329 |
+
return out_t
|
330 |
+
|
331 |
+
def apply_slerp_dift(
|
332 |
+
self,
|
333 |
+
q_t: torch.Tensor,
|
334 |
+
k_s: torch.Tensor,
|
335 |
+
k_t: torch.Tensor,
|
336 |
+
v_s: torch.Tensor,
|
337 |
+
v_t: torch.Tensor,
|
338 |
+
sim: torch.Tensor,
|
339 |
+
attn_t: torch.Tensor,
|
340 |
+
is_cross: bool,
|
341 |
+
place_in_unet: str,
|
342 |
+
num_heads: int,
|
343 |
+
**kwargs
|
344 |
+
) -> torch.Tensor:
|
345 |
+
updated_k_s, updated_v_s, newness = self.process_dift_features(
|
346 |
+
kwargs.get("dift_features"), k_s, k_t, v_s, v_t, return_newness=self.newness
|
347 |
+
)
|
348 |
+
alpha = self.alpha
|
349 |
+
log_slerp = "log" in self.mode
|
350 |
+
|
351 |
+
# Interpolate from k_t->updated_k_s so that if alpha=0, we get k_t
|
352 |
+
k_slerp = self.slerp_fixed_length_batch(k_t, updated_k_s, t=1-alpha)
|
353 |
+
v_slerp = self.slerp_batch(v_t, updated_v_s, t=1-alpha, log_slerp=log_slerp)
|
354 |
+
|
355 |
+
if alpha > 0:
|
356 |
+
k_t_new = newness * k_t + (1 - newness) * k_slerp
|
357 |
+
v_t_new = newness * v_t + (1 - newness) * v_slerp
|
358 |
+
else:
|
359 |
+
k_t_new = k_s
|
360 |
+
v_t_new = v_s
|
361 |
+
|
362 |
+
out_t = self.attn_batch(q_t, k_t_new, v_t_new, sim, attn_t, is_cross, place_in_unet, num_heads, **kwargs)
|
363 |
+
return out_t
|
364 |
+
|
365 |
+
def process_dift_features(
|
366 |
+
self,
|
367 |
+
dift_features: torch.Tensor,
|
368 |
+
k_s: torch.Tensor,
|
369 |
+
k_t: torch.Tensor,
|
370 |
+
v_s: torch.Tensor,
|
371 |
+
v_t: torch.Tensor,
|
372 |
+
return_newness: bool = True
|
373 |
+
):
|
374 |
+
dift_s, _, dift_t = dift_features.chunk(3)
|
375 |
+
k_s1 = k_s.permute(0, 2, 1).reshape(k_s.shape[0], k_s.shape[2], int(k_s.shape[1]**0.5), -1)
|
376 |
+
v_s1 = v_s.permute(0, 2, 1).reshape(v_s.shape[0], v_s.shape[2], int(v_s.shape[1]**0.5), -1)
|
377 |
+
|
378 |
+
k_s1 = k_s1.reshape(-1, k_s1.shape[-2], k_s1.shape[-1])
|
379 |
+
v_s1 = v_s1.reshape(-1, v_s1.shape[-2], v_s1.shape[-1])
|
380 |
+
|
381 |
+
################# uncomment only for visualization #################
|
382 |
+
# result = gen_nn_map(
|
383 |
+
# [dift_s[0], dift_s[0]],
|
384 |
+
# dift_s[0],
|
385 |
+
# dift_t[0],
|
386 |
+
# kernel_size=1,
|
387 |
+
# stride=1,
|
388 |
+
# device=k_s.device,
|
389 |
+
# timestep=self.cur_step,
|
390 |
+
# visualize=True,
|
391 |
+
# return_newness=return_newness
|
392 |
+
# )
|
393 |
+
#####################################################################
|
394 |
+
|
395 |
+
resized_src = F.interpolate(dift_s[0].unsqueeze(0), size=k_s1.shape[-1], mode='bilinear', align_corners=False).squeeze(0)
|
396 |
+
resized_tgt = F.interpolate(dift_t[0].unsqueeze(0), size=k_s1.shape[-1], mode='bilinear', align_corners=False).squeeze(0)
|
397 |
+
|
398 |
+
result = gen_nn_map(
|
399 |
+
[k_s1, v_s1],
|
400 |
+
resized_src,
|
401 |
+
resized_tgt,
|
402 |
+
kernel_size=1,
|
403 |
+
stride=1,
|
404 |
+
device=k_s.device,
|
405 |
+
timestep=self.cur_step,
|
406 |
+
return_newness=return_newness
|
407 |
+
)
|
408 |
+
|
409 |
+
if return_newness:
|
410 |
+
updated_k_s, updated_v_s, newness = result
|
411 |
+
else:
|
412 |
+
updated_k_s, updated_v_s = result
|
413 |
+
newness = torch.zeros_like(updated_k_s[:1]).to(k_s.device)
|
414 |
+
|
415 |
+
newness = newness.view(-1).unsqueeze(0).unsqueeze(-1)
|
416 |
+
updated_k_s = updated_k_s.reshape(k_s.shape[0], k_s.shape[2], -1).permute(0, 2, 1)
|
417 |
+
updated_v_s = updated_v_s.reshape(v_s.shape[0], v_s.shape[2], -1).permute(0, 2, 1)
|
418 |
+
|
419 |
+
return updated_k_s, updated_v_s, newness
|
420 |
+
|
421 |
+
def sinkhorn(self, cost_matrix, max_iter=50, epsilon=1e-8):
|
422 |
+
n, m = cost_matrix.shape
|
423 |
+
K = torch.exp(-cost_matrix / cost_matrix.std()) # Kernelized cost matrix
|
424 |
+
u = torch.ones(n, device=cost_matrix.device) / n
|
425 |
+
v = torch.ones(m, device=cost_matrix.device) / m
|
426 |
+
|
427 |
+
for _ in range(max_iter):
|
428 |
+
u_prev = u.clone()
|
429 |
+
u = 1.0 / (K @ v)
|
430 |
+
v = 1.0 / (K.T @ u)
|
431 |
+
if torch.max(torch.abs(u - u_prev)) < epsilon:
|
432 |
+
break
|
433 |
+
|
434 |
+
P = torch.diag(u) @ K @ torch.diag(v)
|
435 |
+
return P
|
436 |
+
|
437 |
+
def align_queries_via_matching(self, q_s: torch.Tensor, q_t: torch.Tensor, beta: float = 0.5, device: str = "cuda"):
|
438 |
+
q_s = q_s.to(device)
|
439 |
+
q_t = q_t.to(device)
|
440 |
+
|
441 |
+
B, _, _ = q_s.shape
|
442 |
+
q_t_updated = torch.zeros_like(q_t, device=device)
|
443 |
+
|
444 |
+
for b in range(B):
|
445 |
+
########################### L2 ##############################
|
446 |
+
# cost_matrix1 = (q_s[b].unsqueeze(1) - q_t[b].unsqueeze(0)).pow(2).sum(dim=-1)
|
447 |
+
######################### cosine ############################
|
448 |
+
cost_matrix1 = - F.cosine_similarity(
|
449 |
+
q_s[b].unsqueeze(1), q_t[b].unsqueeze(0), dim=-1)
|
450 |
+
#############################################################
|
451 |
+
# cost_matrix2 = (q_t[b].unsqueeze(1) - q_t[b].unsqueeze(0)).pow(2).sum(dim=-1)
|
452 |
+
cost_matrix2 = torch.abs(torch.arange(q_t[b].shape[0], device=device).unsqueeze(0) -
|
453 |
+
torch.arange(q_t[b].shape[0], device=device).unsqueeze(1)).float()
|
454 |
+
cost_matrix2 = cost_matrix2 ** 0.5
|
455 |
+
# cost_matrix2 = torch.where(cost_matrix2 > 0, 1.0, 0.0)
|
456 |
+
|
457 |
+
mean1 = cost_matrix1.mean()
|
458 |
+
std1 = cost_matrix1.std()
|
459 |
+
mean2 = cost_matrix2.mean()
|
460 |
+
std2 = cost_matrix2.std()
|
461 |
+
cost_func_1_std = (cost_matrix1 - mean1) / (std1 + 1e-8)
|
462 |
+
cost_func_2_std = (cost_matrix2 - mean2) / (std2 + 1e-8)
|
463 |
+
|
464 |
+
cost_matrix = beta * cost_func_1_std + (1.0 - beta) * cost_func_2_std
|
465 |
+
cost_np = cost_matrix.detach().cpu().numpy()
|
466 |
+
row_ind, col_ind = linear_sum_assignment(cost_np)
|
467 |
+
q_t_updated[b] = q_t[b][col_ind]
|
468 |
+
|
469 |
+
# P = self.sinkhorn(cost_matrix)
|
470 |
+
# col_ind = P.argmax(dim=1)
|
471 |
+
# idea 1
|
472 |
+
# q_t_updated[b] = q_t[b][col_ind]
|
473 |
+
# idea 2
|
474 |
+
# q_t_updated[b] = P @ q_t[b]
|
475 |
+
|
476 |
+
return q_t_updated
|
477 |
+
|
478 |
+
|
model/modules/dift_utils.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
from typing import List
|
7 |
+
from sklearn.decomposition import PCA
|
8 |
+
from typing import Optional, Tuple
|
9 |
+
from PIL import Image
|
10 |
+
from model.modules.new_object_detection import *
|
11 |
+
|
12 |
+
|
13 |
+
class DIFTLatentStore:
|
14 |
+
def __init__(self, steps: List[int], up_ft_indices: List[int]):
|
15 |
+
self.steps = steps
|
16 |
+
self.up_ft_indices = up_ft_indices
|
17 |
+
self.dift_features = {}
|
18 |
+
self.smoothed_dift_features = {}
|
19 |
+
|
20 |
+
def __call__(self, features: torch.Tensor, t: int, layer_index: int):
|
21 |
+
if t in self.steps and layer_index in self.up_ft_indices:
|
22 |
+
self.dift_features[f'{int(t)}_{layer_index}'] = features
|
23 |
+
|
24 |
+
def smooth(self, kernel_size=3, sigma=1):
|
25 |
+
for key, value in self.dift_features.items():
|
26 |
+
if key not in self.smoothed_dift_features:
|
27 |
+
self.smoothed_dift_features[key] = torch.stack([gaussian_smooth(x, kernel_size=kernel_size, sigma=sigma) for x in value], dim=0)
|
28 |
+
|
29 |
+
def copy(self):
|
30 |
+
copy_dift = DIFTLatentStore(self.steps, self.up_ft_indices)
|
31 |
+
|
32 |
+
for key, value in self.dift_features.items():
|
33 |
+
copy_dift.dift_features[key] = value.clone()
|
34 |
+
|
35 |
+
return copy_dift
|
36 |
+
|
37 |
+
def reset(self):
|
38 |
+
self.dift_features = {}
|
39 |
+
self.smoothed_dift_features = {}
|
40 |
+
|
41 |
+
def gaussian_smooth(input_tensor, kernel_size=3, sigma=1):
|
42 |
+
kernel = np.fromfunction(
|
43 |
+
lambda x, y: (1/ (2 * np.pi * sigma ** 2)) *
|
44 |
+
np.exp(-((x - (kernel_size - 1) / 2) ** 2 + (y - (kernel_size - 1) / 2) ** 2) / (2 * sigma ** 2)),
|
45 |
+
(kernel_size, kernel_size)
|
46 |
+
)
|
47 |
+
kernel = torch.Tensor(kernel / kernel.sum()).to(input_tensor.dtype).to(input_tensor.device)
|
48 |
+
|
49 |
+
kernel = kernel.unsqueeze(0).unsqueeze(0)
|
50 |
+
|
51 |
+
smoothed_slices = []
|
52 |
+
for i in range(input_tensor.size(0)):
|
53 |
+
slice_tensor = input_tensor[i, :, :]
|
54 |
+
slice_tensor = F.conv2d(slice_tensor.unsqueeze(0).unsqueeze(0), kernel, padding=kernel_size // 2)[0, 0]
|
55 |
+
smoothed_slices.append(slice_tensor)
|
56 |
+
|
57 |
+
smoothed_tensor = torch.stack(smoothed_slices, dim=0)
|
58 |
+
|
59 |
+
return smoothed_tensor
|
60 |
+
|
61 |
+
def cos_dist(a, b):
|
62 |
+
a_norm = F.normalize(a, dim=-1)
|
63 |
+
b_norm = F.normalize(b, dim=-1)
|
64 |
+
res = a_norm @ b_norm.T
|
65 |
+
return 1 - res
|
66 |
+
|
67 |
+
def extract_patches(feature_map: torch.Tensor, patch_size: int, stride: int) -> torch.Tensor:
|
68 |
+
# feature_map is (C, H, W). Unfold requires (B, C, H, W).
|
69 |
+
feature_map = feature_map.unsqueeze(0) # (1, C, H, W)
|
70 |
+
|
71 |
+
# Unfold: output shape will be (B, C * patch_size^2, num_patches)
|
72 |
+
patches = F.unfold(
|
73 |
+
feature_map,
|
74 |
+
kernel_size=patch_size,
|
75 |
+
stride=stride
|
76 |
+
)
|
77 |
+
# Now patches is (1, C*patch_size^2, num_patches)
|
78 |
+
|
79 |
+
# Transpose to get shape (num_patches, C*patch_size^2)
|
80 |
+
patches = patches.squeeze(0).transpose(0, 1) # (num_patches, C*patch_size^2)
|
81 |
+
return patches
|
82 |
+
|
83 |
+
def reassemble_patches(
|
84 |
+
patches: torch.Tensor,
|
85 |
+
out_shape: Tuple[int, int, int],
|
86 |
+
patch_size: int,
|
87 |
+
stride: int
|
88 |
+
) -> torch.Tensor:
|
89 |
+
C, H, W = out_shape
|
90 |
+
|
91 |
+
# 1) Convert from (num_patches, C*patch_size^2) to (B=1, C*patch_size^2, num_patches)
|
92 |
+
patches_4d = patches.transpose(0, 1).unsqueeze(0) # (1, C*patch_size^2, num_patches)
|
93 |
+
|
94 |
+
# 2) fold: reassemble patches to (1, C, H, W)
|
95 |
+
reassembled = F.fold(
|
96 |
+
patches_4d,
|
97 |
+
output_size=(H, W),
|
98 |
+
kernel_size=patch_size,
|
99 |
+
stride=stride
|
100 |
+
)
|
101 |
+
|
102 |
+
# 3) Create a divisor mask to account for overlapping regions.
|
103 |
+
# We do this by folding a "ones" tensor of the same shape as patches_4d.
|
104 |
+
ones_input = torch.ones_like(patches_4d)
|
105 |
+
overlap_count = F.fold(
|
106 |
+
ones_input,
|
107 |
+
output_size=(H, W),
|
108 |
+
kernel_size=patch_size,
|
109 |
+
stride=stride
|
110 |
+
)
|
111 |
+
|
112 |
+
# 4) Divide to normalize overlapping areas
|
113 |
+
reassembled = reassembled / overlap_count.clamp_min(1e-8)
|
114 |
+
|
115 |
+
# 5) Remove the batch dimension -> (C, H, W)
|
116 |
+
reassembled = reassembled.squeeze(0)
|
117 |
+
|
118 |
+
return reassembled
|
119 |
+
|
120 |
+
def calculate_patch_distance(index1: int, index2: int, grid_size: int, stride: int, patch_size: int) -> float:
|
121 |
+
row1, col1 = index1 // grid_size, index1 % grid_size
|
122 |
+
row2, col2 = index2 // grid_size, index2 % grid_size
|
123 |
+
# print('row1, col1:', row1, col1)
|
124 |
+
x_center1, y_center1 = (row1 * stride) + (patch_size / 2), (col1 * stride) + (patch_size / 2)
|
125 |
+
x_center2, y_center2 = (row2 * stride) + (patch_size / 2), (col2 * stride) + (patch_size / 2)
|
126 |
+
return math.sqrt((x_center2 - x_center1)**2 + (y_center2 - y_center1)**2)
|
127 |
+
|
128 |
+
def gen_nn_map(
|
129 |
+
latent,
|
130 |
+
src_features,
|
131 |
+
tgt_features,
|
132 |
+
device,
|
133 |
+
kernel_size=3,
|
134 |
+
stride=1,
|
135 |
+
return_newness=False,
|
136 |
+
**kwargs
|
137 |
+
):
|
138 |
+
batch_size = kwargs.get("batch_size", None)
|
139 |
+
timestep = kwargs.get("timestep", None)
|
140 |
+
|
141 |
+
if kwargs.get("visualize", False):
|
142 |
+
dift_visualization(src_features, tgt_features, filename_out=f"output/feat_colors_{timestep}.png")
|
143 |
+
|
144 |
+
src_patches = extract_patches(src_features, kernel_size, stride)
|
145 |
+
tgt_patches = extract_patches(tgt_features, kernel_size, stride)
|
146 |
+
|
147 |
+
if isinstance(latent, list):
|
148 |
+
latent_patches = [extract_patches(l, kernel_size, stride) for l in latent]
|
149 |
+
else:
|
150 |
+
latent_patches = extract_patches(latent, kernel_size, stride)
|
151 |
+
|
152 |
+
num_tgt = src_patches.size(0)
|
153 |
+
batch = batch_size or num_tgt
|
154 |
+
nearest_neighbor_indices = torch.empty(num_tgt, dtype=torch.long, device=device)
|
155 |
+
nearest_neighbor_distances = torch.empty(num_tgt, dtype=torch.long, device=device)
|
156 |
+
dist_chunks = []
|
157 |
+
|
158 |
+
for start in range(0, num_tgt, batch):
|
159 |
+
sims = cos_dist(src_patches, tgt_patches[start : start + batch])
|
160 |
+
dist_chunks.append(sims)
|
161 |
+
min_distances, best_idx = sims.min(0)
|
162 |
+
nearest_neighbor_indices[start : start + batch] = best_idx
|
163 |
+
nearest_neighbor_distances[start : start + batch] = min_distances
|
164 |
+
|
165 |
+
if not isinstance(latent, list):
|
166 |
+
aligned_latent = latent_patches[nearest_neighbor_indices]
|
167 |
+
aligned_latent = reassemble_patches(aligned_latent, latent.shape, kernel_size, stride)
|
168 |
+
else:
|
169 |
+
aligned_latent = [latent_patches[i][nearest_neighbor_indices] for i in range(len(latent_patches))]
|
170 |
+
aligned_latent = [reassemble_patches(l, latent[0].shape, kernel_size, stride) for l in aligned_latent]
|
171 |
+
|
172 |
+
if return_newness:
|
173 |
+
dist_matrix = torch.cat(dist_chunks, dim=0)
|
174 |
+
newness_method = 'two_sided'
|
175 |
+
# newness_method = 'distance'
|
176 |
+
if newness_method.lower() == "distance":
|
177 |
+
newness = detect_newness_distance(nearest_neighbor_distances, quantile=0.97)
|
178 |
+
|
179 |
+
elif newness_method.lower() == "two_sided":
|
180 |
+
newness = detect_newness_two_sided(dist_matrix, k=4)
|
181 |
+
|
182 |
+
out_shape = latent[0].shape if isinstance(latent, list) else latent.shape
|
183 |
+
out_shape = (1, out_shape[1], out_shape[2])
|
184 |
+
|
185 |
+
newness = reassemble_patches(newness.unsqueeze(-1), out_shape, kernel_size, stride)
|
186 |
+
|
187 |
+
|
188 |
+
del src_patches, tgt_patches, latent_patches, nearest_neighbor_indices, nearest_neighbor_distances
|
189 |
+
|
190 |
+
################## visualization of changing source features to match target ##################
|
191 |
+
if False:
|
192 |
+
updated_src_patches = src_patches[nearest_neighbor_indices]
|
193 |
+
updated_src_patches = reassemble_patches(updated_src_patches, src_features.shape, kernel_size, stride)
|
194 |
+
dift_visualization(
|
195 |
+
updated_src_patches, tgt_features,
|
196 |
+
filename_out=f"output/updated_feat_colors_{timestep}.png",
|
197 |
+
)
|
198 |
+
|
199 |
+
if return_newness:
|
200 |
+
if isinstance(aligned_latent, list):
|
201 |
+
aligned_latent.append(newness)
|
202 |
+
else:
|
203 |
+
return aligned_latent, newness
|
204 |
+
return aligned_latent
|
205 |
+
|
206 |
+
def dift_visualization(
|
207 |
+
src_feature: torch.Tensor,
|
208 |
+
tgt_feature: torch.Tensor,
|
209 |
+
filename_out: str,
|
210 |
+
resize_to: Optional[Tuple[int, int]] = (512, 512)
|
211 |
+
):
|
212 |
+
"""
|
213 |
+
Flatten features, apply PCA for 3D embedding, normalize for RGB, then reshape and save as image
|
214 |
+
"""
|
215 |
+
|
216 |
+
C, H_s, W_s = src_feature.shape
|
217 |
+
_, H_t, W_t = tgt_feature.shape
|
218 |
+
|
219 |
+
src_flat = src_feature.permute(1, 2, 0).reshape(-1, C) # (H_s*W_s, C)
|
220 |
+
tgt_flat = tgt_feature.permute(1, 2, 0).reshape(-1, C) # (H_t*W_t, C)
|
221 |
+
|
222 |
+
all_features = torch.cat([src_flat, tgt_flat], dim=0) # shape: (N_total, C)
|
223 |
+
|
224 |
+
all_features_np = all_features.detach().cpu().numpy()
|
225 |
+
|
226 |
+
num_components = 3
|
227 |
+
pca = PCA(n_components=num_components)
|
228 |
+
all_features_3d = pca.fit_transform(all_features_np) # shape: (N_total, 3)
|
229 |
+
|
230 |
+
# 6) Normalize each dimension to [0,1]
|
231 |
+
def normalize_to_01(array_2d):
|
232 |
+
min_vals = array_2d.min(axis=0)
|
233 |
+
max_vals = array_2d.max(axis=0)
|
234 |
+
denom = (max_vals - min_vals) + 1e-8
|
235 |
+
return (array_2d - min_vals) / denom
|
236 |
+
|
237 |
+
all_features_rgb = normalize_to_01(all_features_3d)
|
238 |
+
|
239 |
+
N_src = H_s * W_s
|
240 |
+
src_rgb_flat = all_features_rgb[:N_src] # (N_src, 3)
|
241 |
+
tgt_rgb_flat = all_features_rgb[N_src:] # (N_tgt, 3)
|
242 |
+
|
243 |
+
src_color_map = src_rgb_flat.reshape(H_s, W_s, 3)
|
244 |
+
tgt_color_map = tgt_rgb_flat.reshape(H_t, W_t, 3)
|
245 |
+
|
246 |
+
src_img = Image.fromarray((src_color_map * 255).astype(np.uint8))
|
247 |
+
tgt_img = Image.fromarray((tgt_color_map * 255).astype(np.uint8))
|
248 |
+
|
249 |
+
src_img_resized = src_img.resize(resize_to, Image.Resampling.LANCZOS)
|
250 |
+
tgt_img_resized = tgt_img.resize(resize_to, Image.Resampling.LANCZOS)
|
251 |
+
|
252 |
+
combined_width = resize_to[0] * 2
|
253 |
+
combined_height = resize_to[1]
|
254 |
+
combined_img = Image.new("RGB", (combined_width, combined_height))
|
255 |
+
combined_img.paste(src_img_resized, (0, 0))
|
256 |
+
combined_img.paste(tgt_img_resized, (resize_to[0], 0))
|
257 |
+
|
258 |
+
os.makedirs(os.path.dirname(filename_out), exist_ok=True)
|
259 |
+
combined_img.save(filename_out)
|
260 |
+
|
261 |
+
print(f"Saved visualization to {filename_out}")
|
262 |
+
|
model/modules/freq_filters.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from: https://github.com/kookie12/FlexiEdit/blob/main/flexiedit/frequency_utils.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.fft as fft
|
5 |
+
import math
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
''' define hyperparameters '''
|
9 |
+
# low-pass filter settings
|
10 |
+
filter_type= "gaussian" #"butterworth"
|
11 |
+
n= 4 # gaussian parameter
|
12 |
+
# Sampling process settings
|
13 |
+
global alpha, reinversion_step, d_s, d_t, refined_step, masa_step_original, masa_step_target_branch, masa_step_retarget_branch
|
14 |
+
alpha = 0.7
|
15 |
+
d_t= 0.3
|
16 |
+
d_s= 0.3
|
17 |
+
refined_step = 0
|
18 |
+
masa_step_original = 4
|
19 |
+
masa_step_target_branch = 51
|
20 |
+
masa_step_retarget_branch = 0
|
21 |
+
|
22 |
+
def gaussian_low_pass_filter(shape, d_s=0.25, d_t=0.25):
|
23 |
+
T, H, W = shape[-3], shape[-2], shape[-1]
|
24 |
+
mask = torch.zeros(shape)
|
25 |
+
if d_s==0 or d_t==0:
|
26 |
+
return mask
|
27 |
+
for t in range(T):
|
28 |
+
for h in range(H):
|
29 |
+
for w in range(W):
|
30 |
+
d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
|
31 |
+
mask[..., t,h,w] = math.exp(-1/(2*d_s**2) * d_square)
|
32 |
+
return mask
|
33 |
+
|
34 |
+
|
35 |
+
def butterworth_low_pass_filter(shape, n=4, d_s=0.25, d_t=0.25):
|
36 |
+
T, H, W = shape[-3], shape[-2], shape[-1]
|
37 |
+
mask = torch.zeros(shape)
|
38 |
+
if d_s==0 or d_t==0:
|
39 |
+
return mask
|
40 |
+
for t in range(T):
|
41 |
+
for h in range(H):
|
42 |
+
for w in range(W):
|
43 |
+
d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
|
44 |
+
mask[..., t,h,w] = 1 / (1 + (d_square / d_s**2)**n)
|
45 |
+
return mask
|
46 |
+
|
47 |
+
|
48 |
+
def ideal_low_pass_filter(shape, d_s=0.25, d_t=0.25):
|
49 |
+
T, H, W = shape[-3], shape[-2], shape[-1]
|
50 |
+
mask = torch.zeros(shape)
|
51 |
+
if d_s==0 or d_t==0:
|
52 |
+
return mask
|
53 |
+
for t in range(T):
|
54 |
+
for h in range(H):
|
55 |
+
for w in range(W):
|
56 |
+
d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
|
57 |
+
mask[..., t,h,w] = 1 if d_square <= d_s*2 else 0
|
58 |
+
return mask
|
59 |
+
|
60 |
+
|
61 |
+
def box_low_pass_filter(shape, d_s=0.25, d_t=0.25):
|
62 |
+
T, H, W = shape[-3], shape[-2], shape[-1]
|
63 |
+
mask = torch.zeros(shape)
|
64 |
+
if d_s==0 or d_t==0:
|
65 |
+
return mask
|
66 |
+
|
67 |
+
threshold_s = round(int(H // 2) * d_s)
|
68 |
+
threshold_t = round(T // 2 * d_t)
|
69 |
+
|
70 |
+
cframe, crow, ccol = T // 2, H // 2, W //2
|
71 |
+
#mask[..., cframe - threshold_t:cframe + threshold_t, crow - threshold_s:crow + threshold_s, ccol - threshold_s:ccol + threshold_s] = 1.0
|
72 |
+
mask[..., crow - threshold_s:crow + threshold_s, ccol - threshold_s:ccol + threshold_s] = 1.0
|
73 |
+
|
74 |
+
return mask
|
75 |
+
|
76 |
+
def get_freq_filter(shape, device, filter_type, n, d_s, d_t):
|
77 |
+
if filter_type == "gaussian":
|
78 |
+
return gaussian_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
|
79 |
+
elif filter_type == "ideal":
|
80 |
+
return ideal_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
|
81 |
+
elif filter_type == "box":
|
82 |
+
return box_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
|
83 |
+
elif filter_type == "butterworth":
|
84 |
+
return butterworth_low_pass_filter(shape=shape, n=n, d_s=d_s, d_t=d_t).to(device)
|
85 |
+
else:
|
86 |
+
raise NotImplementedError
|
87 |
+
|
88 |
+
def freq_2d(x, LPF, alpha):
|
89 |
+
# FFT
|
90 |
+
x_freq = fft.fftn(x, dim=(-3, -2, -1))
|
91 |
+
x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1))
|
92 |
+
|
93 |
+
# frequency mix
|
94 |
+
HPF = 1 - LPF
|
95 |
+
|
96 |
+
x_freq_low = x_freq * LPF
|
97 |
+
x_freq_high = x_freq * HPF
|
98 |
+
|
99 |
+
x_freq_sum = x_freq
|
100 |
+
|
101 |
+
# IFFT
|
102 |
+
_x_freq_low = fft.ifftshift(x_freq_low, dim=(-3, -2, -1))
|
103 |
+
x_low = fft.ifftn(_x_freq_low, dim=(-3, -2, -1)).real
|
104 |
+
x_low_alpha = fft.ifftn(_x_freq_low*alpha, dim=(-3, -2, -1)).real
|
105 |
+
|
106 |
+
_x_freq_high = fft.ifftshift(x_freq_high, dim=(-3, -2, -1))
|
107 |
+
x_high = fft.ifftn(_x_freq_high, dim=(-3, -2, -1)).real
|
108 |
+
x_high_alpha = fft.ifftn(_x_freq_high*alpha, dim=(-3, -2, -1)).real
|
109 |
+
|
110 |
+
_x_freq_sum = fft.ifftshift(x_freq_sum, dim=(-3, -2, -1))
|
111 |
+
x_sum = fft.ifftn(_x_freq_sum, dim=(-3, -2, -1)).real
|
112 |
+
|
113 |
+
_x_freq_low_alpha_high = fft.ifftshift(x_freq_low + x_freq_high*alpha, dim=(-3, -2, -1))
|
114 |
+
x_low_alpha_high = fft.ifftn(_x_freq_low_alpha_high, dim=(-3, -2, -1)).real
|
115 |
+
|
116 |
+
_x_freq_high_alpha_low = fft.ifftshift(x_freq_low*alpha + x_freq_high, dim=(-3, -2, -1))
|
117 |
+
x_high_alpha_low = fft.ifftn(_x_freq_high_alpha_low, dim=(-3, -2, -1)).real
|
118 |
+
|
119 |
+
_x_freq_alpha_high_alpha_low = fft.ifftshift(x_freq_low*alpha + x_freq_high*alpha, dim=(-3, -2, -1))
|
120 |
+
x_alpha_high_alpha_low = fft.ifftn(_x_freq_alpha_high_alpha_low, dim=(-3, -2, -1)).real
|
121 |
+
|
122 |
+
return x_low, x_high, x_sum, x_low_alpha, x_high_alpha, x_low_alpha_high, x_high_alpha_low, x_alpha_high_alpha_low
|
123 |
+
|
124 |
+
|
125 |
+
def freq_exp(feat, mode, user_mask, auto_mask, movement_intensifier):
|
126 |
+
movement_intensifier = 1 - movement_intensifier
|
127 |
+
""" Frequency manipulation for latent space. """
|
128 |
+
feat = feat.view(4,1,64,64)
|
129 |
+
f_shape = feat.shape # 1, 4, 64, 64
|
130 |
+
LPF = get_freq_filter(f_shape, feat.device, filter_type, n, d_s, d_t) # d_s, d_t
|
131 |
+
f_dtype = feat.dtype
|
132 |
+
feat_low, feat_high, feat_sum, feat_low_alpha, feat_high_alpha, feat_low_alpha_high, feat_high_alpha_low, x_alpha_high_alpha_low = freq_2d(feat.to(torch.float64), LPF, movement_intensifier)
|
133 |
+
feat_low = feat_low.to(f_dtype)
|
134 |
+
feat_high = feat_high.to(f_dtype)
|
135 |
+
feat_sum = feat_sum.to(f_dtype)
|
136 |
+
feat_low_alpha = feat_low_alpha.to(f_dtype)
|
137 |
+
feat_high_alpha = feat_high_alpha.to(f_dtype)
|
138 |
+
feat_low_alpha_high = feat_low_alpha_high.to(f_dtype)
|
139 |
+
feat_high_alpha_low = feat_high_alpha_low.to(f_dtype)
|
140 |
+
|
141 |
+
latent_low = feat_low.view(1,4,64,64)
|
142 |
+
|
143 |
+
latent_high = feat_high.view(1,4,64,64)
|
144 |
+
|
145 |
+
latent_sum = feat_sum.view(1,4,64,64)
|
146 |
+
|
147 |
+
latent_low_alpha_high = feat_low_alpha_high.view(1,4,64,64)
|
148 |
+
latent_high_alpha_low = feat_high_alpha_low.view(1,4,64,64)
|
149 |
+
|
150 |
+
mask = torch.zeros_like(latent_sum)
|
151 |
+
if mode == "auto_mask":
|
152 |
+
auto_mask = auto_mask.unsqueeze(1) # [1,64,64] => [1,1,64,64]
|
153 |
+
mask = auto_mask.expand_as(latent_sum) # [1,1,64,64] => [1,4,64,64]
|
154 |
+
|
155 |
+
elif mode == "user_mask":
|
156 |
+
bbx_start_point, bbx_end_point = user_mask
|
157 |
+
mask[:, :, bbx_start_point[1]//8:bbx_end_point[1]//8, bbx_start_point[0]//8:bbx_end_point[0]//8] = 1
|
158 |
+
|
159 |
+
latents_shape = latent_sum.shape
|
160 |
+
random_gaussian = torch.randn(latents_shape, device=latent_sum.device)
|
161 |
+
|
162 |
+
# Apply gaussian scaling
|
163 |
+
g_range = random_gaussian.max() - random_gaussian.min()
|
164 |
+
l_range = latent_low_alpha_high.max() - latent_low_alpha_high.min()
|
165 |
+
random_gaussian = random_gaussian * (l_range/g_range)
|
166 |
+
|
167 |
+
# No scaling applied. If you wish to apply scaling to the mask, replace the following lines accordingly.
|
168 |
+
s_range, r_range, s_range2, r_range2 = 1, 1, 1, 1
|
169 |
+
|
170 |
+
latent_mask_h = latent_sum * (1 - mask) + (latent_low_alpha_high + (1-movement_intensifier)*random_gaussian) * (s_range/r_range) *mask # edit 할 부분에 high frequency가 줄어들고 가우시안 더하기
|
171 |
+
latent_mask_l = latent_sum * (1 - mask) + (latent_high_alpha_low + (1-movement_intensifier)*random_gaussian) * (s_range2/r_range2) *mask # edit 할 부분에 low frequency가 줄어들고 가우시안 더하기
|
172 |
+
|
173 |
+
return latent_mask_h, latent_mask_l, latent_sum # latent_low, latent_high, latent_sum
|
model/modules/new_object_detection.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
def distance_to_similarity(distances, temperature=1.0):
|
4 |
+
"""
|
5 |
+
Turns a distance matrix into a similarity matrix so it works with distribution-based metrics.
|
6 |
+
"""
|
7 |
+
similarities = torch.exp(-distances / temperature)
|
8 |
+
similarities = torch.clamp(similarities, min=1e-8)
|
9 |
+
return similarities
|
10 |
+
|
11 |
+
#################################
|
12 |
+
## "New Object" Detection ##
|
13 |
+
#################################
|
14 |
+
|
15 |
+
def detect_newness_two_sided(distances, k=3, quantile=0.97):
|
16 |
+
device = distances.device
|
17 |
+
N_src, N_tgt = distances.shape
|
18 |
+
|
19 |
+
topk_src_idx_t = torch.topk(distances, k, dim=0, largest=False).indices # [k, N_tgt]
|
20 |
+
topk_tgt_idx_s = torch.topk(distances, k, dim=1, largest=False).indices # [N_src, k]
|
21 |
+
|
22 |
+
src_to_tgt_mask = torch.zeros((N_src, N_tgt), device=device)
|
23 |
+
tgt_to_src_mask = torch.zeros((N_src, N_tgt), device=device)
|
24 |
+
|
25 |
+
row_indices = topk_src_idx_t # [k, N_tgt]
|
26 |
+
col_indices = torch.arange(N_tgt, device=device).unsqueeze(0).repeat(k, 1) # [k, N_tgt]
|
27 |
+
src_to_tgt_mask[row_indices, col_indices] = 1.0 # Assign 1.0 at the top-k positions
|
28 |
+
|
29 |
+
row_indices = torch.arange(N_src, device=device).unsqueeze(1).repeat(1, k) # [N_src, k]
|
30 |
+
col_indices = topk_tgt_idx_s # [N_src, k]
|
31 |
+
tgt_to_src_mask[row_indices, col_indices] = 1.0 # Assign 1.0 at the top-k positions
|
32 |
+
|
33 |
+
overlap_mask = (src_to_tgt_mask * tgt_to_src_mask).sum(dim=0) > 0 # [N_tgt]
|
34 |
+
|
35 |
+
distances[:, overlap_mask] = 0.0
|
36 |
+
|
37 |
+
two_sided_mask = (~overlap_mask).float()
|
38 |
+
|
39 |
+
min_distances, _ = distances.min(dim=0)
|
40 |
+
threshold = torch.quantile(min_distances, quantile)
|
41 |
+
threshold_mask = (min_distances > threshold).float()
|
42 |
+
|
43 |
+
combined_mask = two_sided_mask * threshold_mask
|
44 |
+
return combined_mask
|
45 |
+
|
46 |
+
def detect_newness_distance(min_distances, quantile=0.97):
|
47 |
+
"""
|
48 |
+
Old approach: threshold on min distance at a chosen percentile.
|
49 |
+
"""
|
50 |
+
threshold = torch.quantile(min_distances, quantile)
|
51 |
+
newness_mask = (min_distances > threshold).float()
|
52 |
+
return newness_mask
|
53 |
+
|
54 |
+
def detect_newness_topk_margin(distances, top_k=2, quantile=0.03):
|
55 |
+
"""
|
56 |
+
Top-k margin approach in distance space.
|
57 |
+
distances: [N_src, N_tgt]
|
58 |
+
Sort each column ascending => best match is index 0, second best is index 1, etc.
|
59 |
+
A smaller margin => ambiguous => likely new.
|
60 |
+
We threshold the margin at some percentile.
|
61 |
+
"""
|
62 |
+
sorted_dists, _ = torch.sort(distances, dim=0)
|
63 |
+
best = sorted_dists[0] # [N_tgt]
|
64 |
+
second_best = sorted_dists[1] if top_k >= 2 else sorted_dists[0] # [N_tgt]
|
65 |
+
margin = second_best - best # [N_tgt]
|
66 |
+
|
67 |
+
# If margin < threshold => ambiguous => "new"
|
68 |
+
# We'll pick threshold as a quantile of margin
|
69 |
+
threshold = torch.quantile(margin, quantile)
|
70 |
+
newness_mask = (margin < threshold).float()
|
71 |
+
return newness_mask
|
72 |
+
|
73 |
+
def detect_newness_entropy(distances, temperature=1.0, quantile=0.97):
|
74 |
+
"""
|
75 |
+
Entropy-based approach. First convert distance->similarity with an exponential.
|
76 |
+
Then normalize to get a distribution for each target patch, compute Shannon entropy.
|
77 |
+
High entropy => new object (no strong match).
|
78 |
+
"""
|
79 |
+
similarities = distance_to_similarity(distances, temperature=temperature)
|
80 |
+
probs = similarities / similarities.sum(dim=0, keepdim=True) # [N_src, N_tgt]
|
81 |
+
# Shannon Entropy: -sum(p log p)
|
82 |
+
entropy = -torch.sum(probs * torch.log(probs), dim=0) # [N_tgt]
|
83 |
+
|
84 |
+
# threshold
|
85 |
+
threshold = torch.quantile(entropy, quantile)
|
86 |
+
newness_mask = (entropy > threshold).float()
|
87 |
+
return newness_mask
|
88 |
+
|
89 |
+
def detect_newness_gini(distances, temperature=1.0, quantile=0.97):
|
90 |
+
"""
|
91 |
+
Gini impurity-based approach. Convert distances to similarities,
|
92 |
+
get a distribution, compute Gini.
|
93 |
+
High Gini => wide distribution => new object.
|
94 |
+
"""
|
95 |
+
similarities = distance_to_similarity(distances, temperature=temperature)
|
96 |
+
probs = similarities / similarities.sum(dim=0, keepdim=True)
|
97 |
+
# Gini: sum(p_i*(1-p_i)) => high if spread out
|
98 |
+
gini = torch.sum(probs * (1.0 - probs), dim=0) # [N_tgt]
|
99 |
+
|
100 |
+
threshold = torch.quantile(gini, quantile)
|
101 |
+
newness_mask = (gini > threshold).float()
|
102 |
+
return newness_mask
|
103 |
+
|
104 |
+
def detect_newness_kl(distances, temperature=1.0, quantile=0.97):
|
105 |
+
"""
|
106 |
+
KL-based approach. Compare distribution to uniform => if close to uniform => new object.
|
107 |
+
1) Convert distances -> similarities
|
108 |
+
2) p(x) = similarities / sum(similarities)
|
109 |
+
3) KL(p || uniform) => sum p(x) log (p(x)/(1/N_src))
|
110 |
+
4) If p is near uniform => KL small => new object.
|
111 |
+
We'll invert it => newness ~ 1/KL.
|
112 |
+
"""
|
113 |
+
similarities = distance_to_similarity(distances, temperature=temperature)
|
114 |
+
N_src = distances.shape[0]
|
115 |
+
probs = similarities / similarities.sum(dim=0, keepdim=True)
|
116 |
+
|
117 |
+
uniform_val = 1.0 / float(N_src)
|
118 |
+
kl_vals = torch.sum(probs * torch.log(probs / uniform_val), dim=0) # [N_tgt]
|
119 |
+
inv_kl = 1.0 / (kl_vals + 1e-8) # big => distribution is near uniform => new
|
120 |
+
|
121 |
+
threshold = torch.quantile(inv_kl, quantile)
|
122 |
+
newness_mask = (inv_kl > threshold).float()
|
123 |
+
return newness_mask
|
124 |
+
|
125 |
+
def detect_newness_variation_ratio(distances, temperature=1.0, quantile=0.97):
|
126 |
+
"""
|
127 |
+
Variation Ratio: 1 - max(prob).
|
128 |
+
1) Convert distance->similarity
|
129 |
+
2) p(x) = sim(x) / sum_x'(sim(x'))
|
130 |
+
3) var_ratio = 1 - max(p)
|
131 |
+
High var_ratio => new object.
|
132 |
+
"""
|
133 |
+
similarities = distance_to_similarity(distances, temperature=temperature)
|
134 |
+
probs = similarities / similarities.sum(dim=0, keepdim=True)
|
135 |
+
max_prob, _ = torch.max(probs, dim=0) # [N_tgt]
|
136 |
+
var_ratio = 1.0 - max_prob
|
137 |
+
|
138 |
+
threshold = torch.quantile(var_ratio, quantile)
|
139 |
+
newness_mask = (var_ratio > threshold).float()
|
140 |
+
return newness_mask
|
141 |
+
|
142 |
+
|
143 |
+
def detect_newness_two_sided_ratio(
|
144 |
+
distances,
|
145 |
+
top_k_ratio_quantile=0.03,
|
146 |
+
two_sided=True
|
147 |
+
):
|
148 |
+
"""
|
149 |
+
Two-sided matching + ratio test in distance space.
|
150 |
+
|
151 |
+
Ratio test: For each t, let d0 = best distance, d1 = second best.
|
152 |
+
ratio = d0 / (d1 + 1e-8).
|
153 |
+
If ratio < ratio_threshold => ambiguous => new.
|
154 |
+
(Typically a smaller ratio means a better match, but we invert logic:
|
155 |
+
a patch can be "new" if the ratio is extremely small or ambiguous.)
|
156 |
+
"""
|
157 |
+
|
158 |
+
N_src, N_tgt = distances.shape
|
159 |
+
|
160 |
+
# Target → Source: best match
|
161 |
+
min_vals_t, best_s_for_t = torch.min(distances, dim=0)
|
162 |
+
|
163 |
+
# Source → Target: best match
|
164 |
+
min_vals_s, best_t_for_s = torch.min(distances, dim=1)
|
165 |
+
|
166 |
+
# Two-sided consistency check
|
167 |
+
twosided_mask = torch.zeros(N_tgt, device=distances.device)
|
168 |
+
if two_sided:
|
169 |
+
for t in range(N_tgt):
|
170 |
+
s = best_s_for_t[t]
|
171 |
+
if best_t_for_s[s] != t:
|
172 |
+
twosided_mask[t] = 1.0
|
173 |
+
|
174 |
+
# Ratio test: ambiguous if best match is not clearly better than second best
|
175 |
+
sorted_dists, _ = torch.sort(distances, dim=0)
|
176 |
+
d0 = sorted_dists[0]
|
177 |
+
d1 = sorted_dists[1]
|
178 |
+
ratio = d0 / (d1 + 1e-8)
|
179 |
+
ratio_threshold = torch.quantile(ratio, top_k_ratio_quantile)
|
180 |
+
ratio_mask = (ratio < ratio_threshold).float()
|
181 |
+
|
182 |
+
# Combine checks (currently using only two-sided result)
|
183 |
+
newness_mask = twosided_mask
|
184 |
+
|
185 |
+
return newness_mask
|
186 |
+
|
187 |
+
|
model/modules/register_attention.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from einops import rearrange, repeat
|
4 |
+
|
5 |
+
from typing import Any
|
6 |
+
from model.directional_attentions import DirectionalAttentionControl, AttentionBase
|
7 |
+
from utils.utils import find_smallest_key_with_suffix
|
8 |
+
|
9 |
+
|
10 |
+
def register_attention_editor_diffusers(model: Any, editor: AttentionBase):
|
11 |
+
def ca_forward(self, place_in_unet):
|
12 |
+
def forward(
|
13 |
+
x: torch.Tensor,
|
14 |
+
encoder_hidden_states: torch.Tensor = None,
|
15 |
+
attention_mask: torch.Tensor = None,
|
16 |
+
context: torch.Tensor = None,
|
17 |
+
mask: torch.Tensor = None
|
18 |
+
):
|
19 |
+
if encoder_hidden_states is not None:
|
20 |
+
context = encoder_hidden_states
|
21 |
+
if attention_mask is not None:
|
22 |
+
mask = attention_mask
|
23 |
+
|
24 |
+
h = self.heads
|
25 |
+
is_cross = context is not None
|
26 |
+
context = context if is_cross else x
|
27 |
+
|
28 |
+
q = self.to_q(x)
|
29 |
+
k = self.to_k(context)
|
30 |
+
v = self.to_v(context)
|
31 |
+
|
32 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
33 |
+
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale
|
34 |
+
|
35 |
+
if mask is not None:
|
36 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
37 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
38 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
39 |
+
sim.masked_fill_(~mask, max_neg_value)
|
40 |
+
|
41 |
+
dift_features_dict = getattr(model.unet.latent_store, 'dift_features', {})
|
42 |
+
dift_features_key = find_smallest_key_with_suffix(dift_features_dict, suffix='_1')
|
43 |
+
dift_features = dift_features_dict.get(dift_features_key, None)
|
44 |
+
|
45 |
+
attn = sim.softmax(dim=-1)
|
46 |
+
out = editor(
|
47 |
+
q, k, v, sim, attn, is_cross, place_in_unet,
|
48 |
+
self.heads,
|
49 |
+
scale=self.scale,
|
50 |
+
dift_features=dift_features
|
51 |
+
)
|
52 |
+
|
53 |
+
to_out = self.to_out
|
54 |
+
if isinstance(to_out, nn.modules.container.ModuleList):
|
55 |
+
to_out = self.to_out[0]
|
56 |
+
|
57 |
+
return to_out(out)
|
58 |
+
return forward
|
59 |
+
|
60 |
+
def register_editor(net, count, place_in_unet):
|
61 |
+
for name, subnet in net.named_children():
|
62 |
+
if net.__class__.__name__ == 'Attention': # spatial Transformer layer
|
63 |
+
net.forward = ca_forward(net, place_in_unet)
|
64 |
+
return count + 1
|
65 |
+
elif hasattr(net, 'children'):
|
66 |
+
count = register_editor(subnet, count, place_in_unet)
|
67 |
+
return count
|
68 |
+
|
69 |
+
cross_att_count = 0
|
70 |
+
for net_name, net in model.unet.named_children():
|
71 |
+
if "down" in net_name:
|
72 |
+
cross_att_count += register_editor(net, 0, "down")
|
73 |
+
elif "mid" in net_name:
|
74 |
+
cross_att_count += register_editor(net, 0, "mid")
|
75 |
+
elif "up" in net_name:
|
76 |
+
cross_att_count += register_editor(net, 0, "up")
|
77 |
+
editor.num_att_layers = cross_att_count
|
model/pipeline_sdxl.py
ADDED
@@ -0,0 +1,1440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified only lines 1360–1370; search for 'changed section' to locate the update easily.
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import PIL.Image
|
7 |
+
import torch
|
8 |
+
from transformers import (
|
9 |
+
CLIPImageProcessor,
|
10 |
+
CLIPTextModel,
|
11 |
+
CLIPTextModelWithProjection,
|
12 |
+
CLIPTokenizer,
|
13 |
+
CLIPVisionModelWithProjection,
|
14 |
+
)
|
15 |
+
|
16 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
17 |
+
from diffusers.loaders import (
|
18 |
+
FromSingleFileMixin,
|
19 |
+
IPAdapterMixin,
|
20 |
+
StableDiffusionXLLoraLoaderMixin,
|
21 |
+
TextualInversionLoaderMixin,
|
22 |
+
)
|
23 |
+
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
24 |
+
from diffusers.models.attention_processor import (
|
25 |
+
AttnProcessor2_0,
|
26 |
+
LoRAAttnProcessor2_0,
|
27 |
+
LoRAXFormersAttnProcessor,
|
28 |
+
XFormersAttnProcessor,
|
29 |
+
)
|
30 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
31 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
32 |
+
from diffusers.utils import (
|
33 |
+
USE_PEFT_BACKEND,
|
34 |
+
deprecate,
|
35 |
+
is_invisible_watermark_available,
|
36 |
+
is_torch_xla_available,
|
37 |
+
logging,
|
38 |
+
replace_example_docstring,
|
39 |
+
scale_lora_layers,
|
40 |
+
unscale_lora_layers,
|
41 |
+
)
|
42 |
+
from diffusers.utils.torch_utils import randn_tensor
|
43 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
44 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
45 |
+
|
46 |
+
from model.modules.dift_utils import gaussian_smooth, gen_nn_map
|
47 |
+
|
48 |
+
|
49 |
+
if is_invisible_watermark_available():
|
50 |
+
from .watermark import StableDiffusionXLWatermarker
|
51 |
+
|
52 |
+
if is_torch_xla_available():
|
53 |
+
import torch_xla.core.xla_model as xm
|
54 |
+
|
55 |
+
XLA_AVAILABLE = True
|
56 |
+
else:
|
57 |
+
XLA_AVAILABLE = False
|
58 |
+
|
59 |
+
|
60 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
61 |
+
|
62 |
+
EXAMPLE_DOC_STRING = """
|
63 |
+
Examples:
|
64 |
+
```py
|
65 |
+
>>> import torch
|
66 |
+
>>> from diffusers import StableDiffusionXLImg2ImgPipeline
|
67 |
+
>>> from diffusers.utils import load_image
|
68 |
+
|
69 |
+
>>> pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
70 |
+
... "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16
|
71 |
+
... )
|
72 |
+
>>> pipe = pipe.to("cuda")
|
73 |
+
>>> url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"
|
74 |
+
|
75 |
+
>>> init_image = load_image(url).convert("RGB")
|
76 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
77 |
+
>>> image = pipe(prompt, image=init_image).images[0]
|
78 |
+
```
|
79 |
+
"""
|
80 |
+
|
81 |
+
|
82 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
83 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
84 |
+
"""
|
85 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
86 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
87 |
+
"""
|
88 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
89 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
90 |
+
# rescale the results from guidance (fixes overexposure)
|
91 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
92 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
93 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
94 |
+
return noise_cfg
|
95 |
+
|
96 |
+
|
97 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
98 |
+
def retrieve_latents(
|
99 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
100 |
+
):
|
101 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
102 |
+
return encoder_output.latent_dist.sample(generator)
|
103 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
104 |
+
return encoder_output.latent_dist.mode()
|
105 |
+
elif hasattr(encoder_output, "latents"):
|
106 |
+
return encoder_output.latents
|
107 |
+
else:
|
108 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
109 |
+
|
110 |
+
|
111 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
112 |
+
def retrieve_timesteps(
|
113 |
+
scheduler,
|
114 |
+
num_inference_steps: Optional[int] = None,
|
115 |
+
device: Optional[Union[str, torch.device]] = None,
|
116 |
+
timesteps: Optional[List[int]] = None,
|
117 |
+
**kwargs,
|
118 |
+
):
|
119 |
+
"""
|
120 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
121 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
scheduler (`SchedulerMixin`):
|
125 |
+
The scheduler to get timesteps from.
|
126 |
+
num_inference_steps (`int`):
|
127 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
128 |
+
`timesteps` must be `None`.
|
129 |
+
device (`str` or `torch.device`, *optional*):
|
130 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
131 |
+
timesteps (`List[int]`, *optional*):
|
132 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
133 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
134 |
+
must be `None`.
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
138 |
+
second element is the number of inference steps.
|
139 |
+
"""
|
140 |
+
if timesteps is not None:
|
141 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
142 |
+
if not accepts_timesteps:
|
143 |
+
raise ValueError(
|
144 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
145 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
146 |
+
)
|
147 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
148 |
+
timesteps = scheduler.timesteps
|
149 |
+
num_inference_steps = len(timesteps)
|
150 |
+
else:
|
151 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
152 |
+
timesteps = scheduler.timesteps
|
153 |
+
return timesteps, num_inference_steps
|
154 |
+
|
155 |
+
|
156 |
+
class StableDiffusionXLImg2ImgPipeline(
|
157 |
+
DiffusionPipeline,
|
158 |
+
StableDiffusionMixin,
|
159 |
+
TextualInversionLoaderMixin,
|
160 |
+
FromSingleFileMixin,
|
161 |
+
StableDiffusionXLLoraLoaderMixin,
|
162 |
+
IPAdapterMixin,
|
163 |
+
):
|
164 |
+
r"""
|
165 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
166 |
+
|
167 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
168 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
169 |
+
|
170 |
+
The pipeline also inherits the following loading methods:
|
171 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
172 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
173 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
174 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
175 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
176 |
+
|
177 |
+
Args:
|
178 |
+
vae ([`AutoencoderKL`]):
|
179 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
180 |
+
text_encoder ([`CLIPTextModel`]):
|
181 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
182 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
183 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
184 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
185 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
186 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
187 |
+
specifically the
|
188 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
189 |
+
variant.
|
190 |
+
tokenizer (`CLIPTokenizer`):
|
191 |
+
Tokenizer of class
|
192 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
193 |
+
tokenizer_2 (`CLIPTokenizer`):
|
194 |
+
Second Tokenizer of class
|
195 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
196 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
197 |
+
scheduler ([`SchedulerMixin`]):
|
198 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
199 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
200 |
+
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
|
201 |
+
Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the
|
202 |
+
config of `stabilityai/stable-diffusion-xl-refiner-1-0`.
|
203 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
204 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
205 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
206 |
+
add_watermarker (`bool`, *optional*):
|
207 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
208 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
209 |
+
watermarker will be used.
|
210 |
+
"""
|
211 |
+
|
212 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
213 |
+
_optional_components = [
|
214 |
+
"tokenizer",
|
215 |
+
"tokenizer_2",
|
216 |
+
"text_encoder",
|
217 |
+
"text_encoder_2",
|
218 |
+
"image_encoder",
|
219 |
+
"feature_extractor",
|
220 |
+
]
|
221 |
+
_callback_tensor_inputs = [
|
222 |
+
"latents",
|
223 |
+
"prompt_embeds",
|
224 |
+
"negative_prompt_embeds",
|
225 |
+
"add_text_embeds",
|
226 |
+
"add_time_ids",
|
227 |
+
"negative_pooled_prompt_embeds",
|
228 |
+
"add_neg_time_ids",
|
229 |
+
]
|
230 |
+
|
231 |
+
def __init__(
|
232 |
+
self,
|
233 |
+
vae: AutoencoderKL,
|
234 |
+
text_encoder: CLIPTextModel,
|
235 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
236 |
+
tokenizer: CLIPTokenizer,
|
237 |
+
tokenizer_2: CLIPTokenizer,
|
238 |
+
unet: UNet2DConditionModel,
|
239 |
+
scheduler: KarrasDiffusionSchedulers,
|
240 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
241 |
+
feature_extractor: CLIPImageProcessor = None,
|
242 |
+
requires_aesthetics_score: bool = False,
|
243 |
+
force_zeros_for_empty_prompt: bool = True,
|
244 |
+
add_watermarker: Optional[bool] = None,
|
245 |
+
):
|
246 |
+
super().__init__()
|
247 |
+
|
248 |
+
self.register_modules(
|
249 |
+
vae=vae,
|
250 |
+
text_encoder=text_encoder,
|
251 |
+
text_encoder_2=text_encoder_2,
|
252 |
+
tokenizer=tokenizer,
|
253 |
+
tokenizer_2=tokenizer_2,
|
254 |
+
unet=unet,
|
255 |
+
image_encoder=image_encoder,
|
256 |
+
feature_extractor=feature_extractor,
|
257 |
+
scheduler=scheduler,
|
258 |
+
)
|
259 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
260 |
+
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
261 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
262 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
263 |
+
|
264 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
265 |
+
|
266 |
+
if add_watermarker:
|
267 |
+
self.watermark = StableDiffusionXLWatermarker()
|
268 |
+
else:
|
269 |
+
self.watermark = None
|
270 |
+
|
271 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
272 |
+
def encode_prompt(
|
273 |
+
self,
|
274 |
+
prompt: str,
|
275 |
+
prompt_2: Optional[str] = None,
|
276 |
+
device: Optional[torch.device] = None,
|
277 |
+
num_images_per_prompt: int = 1,
|
278 |
+
do_classifier_free_guidance: bool = True,
|
279 |
+
negative_prompt: Optional[str] = None,
|
280 |
+
negative_prompt_2: Optional[str] = None,
|
281 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
282 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
283 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
284 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
285 |
+
lora_scale: Optional[float] = None,
|
286 |
+
clip_skip: Optional[int] = None,
|
287 |
+
):
|
288 |
+
r"""
|
289 |
+
Encodes the prompt into text encoder hidden states.
|
290 |
+
|
291 |
+
Args:
|
292 |
+
prompt (`str` or `List[str]`, *optional*):
|
293 |
+
prompt to be encoded
|
294 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
295 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
296 |
+
used in both text-encoders
|
297 |
+
device: (`torch.device`):
|
298 |
+
torch device
|
299 |
+
num_images_per_prompt (`int`):
|
300 |
+
number of images that should be generated per prompt
|
301 |
+
do_classifier_free_guidance (`bool`):
|
302 |
+
whether to use classifier free guidance or not
|
303 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
304 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
305 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
306 |
+
less than `1`).
|
307 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
308 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
309 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
310 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
311 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
312 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
313 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
314 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
315 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
316 |
+
argument.
|
317 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
318 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
319 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
320 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
321 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
322 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
323 |
+
input argument.
|
324 |
+
lora_scale (`float`, *optional*):
|
325 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
326 |
+
clip_skip (`int`, *optional*):
|
327 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
328 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
329 |
+
"""
|
330 |
+
device = device or self._execution_device
|
331 |
+
|
332 |
+
# set lora scale so that monkey patched LoRA
|
333 |
+
# function of text encoder can correctly access it
|
334 |
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
335 |
+
self._lora_scale = lora_scale
|
336 |
+
|
337 |
+
# dynamically adjust the LoRA scale
|
338 |
+
if self.text_encoder is not None:
|
339 |
+
if not USE_PEFT_BACKEND:
|
340 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
341 |
+
else:
|
342 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
343 |
+
|
344 |
+
if self.text_encoder_2 is not None:
|
345 |
+
if not USE_PEFT_BACKEND:
|
346 |
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
347 |
+
else:
|
348 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
349 |
+
|
350 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
351 |
+
|
352 |
+
if prompt is not None:
|
353 |
+
batch_size = len(prompt)
|
354 |
+
else:
|
355 |
+
batch_size = prompt_embeds.shape[0]
|
356 |
+
|
357 |
+
# Define tokenizers and text encoders
|
358 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
359 |
+
text_encoders = (
|
360 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
361 |
+
)
|
362 |
+
|
363 |
+
if prompt_embeds is None:
|
364 |
+
prompt_2 = prompt_2 or prompt
|
365 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
366 |
+
|
367 |
+
# textual inversion: process multi-vector tokens if necessary
|
368 |
+
prompt_embeds_list = []
|
369 |
+
prompts = [prompt, prompt_2]
|
370 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
371 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
372 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
373 |
+
|
374 |
+
text_inputs = tokenizer(
|
375 |
+
prompt,
|
376 |
+
padding="max_length",
|
377 |
+
max_length=tokenizer.model_max_length,
|
378 |
+
truncation=True,
|
379 |
+
return_tensors="pt",
|
380 |
+
)
|
381 |
+
|
382 |
+
text_input_ids = text_inputs.input_ids
|
383 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
384 |
+
|
385 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
386 |
+
text_input_ids, untruncated_ids
|
387 |
+
):
|
388 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
389 |
+
logger.warning(
|
390 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
391 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
392 |
+
)
|
393 |
+
|
394 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
395 |
+
|
396 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
397 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
398 |
+
if clip_skip is None:
|
399 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
400 |
+
else:
|
401 |
+
# "2" because SDXL always indexes from the penultimate layer.
|
402 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
403 |
+
|
404 |
+
prompt_embeds_list.append(prompt_embeds)
|
405 |
+
|
406 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
407 |
+
|
408 |
+
# get unconditional embeddings for classifier free guidance
|
409 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
410 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
411 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
412 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
413 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
414 |
+
negative_prompt = negative_prompt or ""
|
415 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
416 |
+
|
417 |
+
# normalize str to list
|
418 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
419 |
+
negative_prompt_2 = (
|
420 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
421 |
+
)
|
422 |
+
|
423 |
+
uncond_tokens: List[str]
|
424 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
425 |
+
raise TypeError(
|
426 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
427 |
+
f" {type(prompt)}."
|
428 |
+
)
|
429 |
+
elif batch_size != len(negative_prompt):
|
430 |
+
raise ValueError(
|
431 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
432 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
433 |
+
" the batch size of `prompt`."
|
434 |
+
)
|
435 |
+
else:
|
436 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
437 |
+
|
438 |
+
negative_prompt_embeds_list = []
|
439 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
440 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
441 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
442 |
+
|
443 |
+
max_length = prompt_embeds.shape[1]
|
444 |
+
uncond_input = tokenizer(
|
445 |
+
negative_prompt,
|
446 |
+
padding="max_length",
|
447 |
+
max_length=max_length,
|
448 |
+
truncation=True,
|
449 |
+
return_tensors="pt",
|
450 |
+
)
|
451 |
+
|
452 |
+
negative_prompt_embeds = text_encoder(
|
453 |
+
uncond_input.input_ids.to(device),
|
454 |
+
output_hidden_states=True,
|
455 |
+
)
|
456 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
457 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
458 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
459 |
+
|
460 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
461 |
+
|
462 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
463 |
+
|
464 |
+
if self.text_encoder_2 is not None:
|
465 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
466 |
+
else:
|
467 |
+
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
468 |
+
|
469 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
470 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
471 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
472 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
473 |
+
|
474 |
+
if do_classifier_free_guidance:
|
475 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
476 |
+
seq_len = negative_prompt_embeds.shape[1]
|
477 |
+
|
478 |
+
if self.text_encoder_2 is not None:
|
479 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
480 |
+
else:
|
481 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
482 |
+
|
483 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
484 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
485 |
+
|
486 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
487 |
+
bs_embed * num_images_per_prompt, -1
|
488 |
+
)
|
489 |
+
if do_classifier_free_guidance:
|
490 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
491 |
+
bs_embed * num_images_per_prompt, -1
|
492 |
+
)
|
493 |
+
|
494 |
+
if self.text_encoder is not None:
|
495 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
496 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
497 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
498 |
+
|
499 |
+
if self.text_encoder_2 is not None:
|
500 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
501 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
502 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
503 |
+
|
504 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
505 |
+
|
506 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
507 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
508 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
509 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
510 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
511 |
+
# and should be between [0, 1]
|
512 |
+
|
513 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
514 |
+
extra_step_kwargs = {}
|
515 |
+
if accepts_eta:
|
516 |
+
extra_step_kwargs["eta"] = eta
|
517 |
+
|
518 |
+
# check if the scheduler accepts generator
|
519 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
520 |
+
if accepts_generator:
|
521 |
+
extra_step_kwargs["generator"] = generator
|
522 |
+
return extra_step_kwargs
|
523 |
+
|
524 |
+
def check_inputs(
|
525 |
+
self,
|
526 |
+
prompt,
|
527 |
+
prompt_2,
|
528 |
+
strength,
|
529 |
+
num_inference_steps,
|
530 |
+
callback_steps,
|
531 |
+
negative_prompt=None,
|
532 |
+
negative_prompt_2=None,
|
533 |
+
prompt_embeds=None,
|
534 |
+
negative_prompt_embeds=None,
|
535 |
+
ip_adapter_image=None,
|
536 |
+
ip_adapter_image_embeds=None,
|
537 |
+
callback_on_step_end_tensor_inputs=None,
|
538 |
+
):
|
539 |
+
if strength < 0 or strength > 1:
|
540 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
541 |
+
if num_inference_steps is None:
|
542 |
+
raise ValueError("`num_inference_steps` cannot be None.")
|
543 |
+
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
|
544 |
+
raise ValueError(
|
545 |
+
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
|
546 |
+
f" {type(num_inference_steps)}."
|
547 |
+
)
|
548 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
549 |
+
raise ValueError(
|
550 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
551 |
+
f" {type(callback_steps)}."
|
552 |
+
)
|
553 |
+
|
554 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
555 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
556 |
+
):
|
557 |
+
raise ValueError(
|
558 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
559 |
+
)
|
560 |
+
|
561 |
+
if prompt is not None and prompt_embeds is not None:
|
562 |
+
raise ValueError(
|
563 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
564 |
+
" only forward one of the two."
|
565 |
+
)
|
566 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
567 |
+
raise ValueError(
|
568 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
569 |
+
" only forward one of the two."
|
570 |
+
)
|
571 |
+
elif prompt is None and prompt_embeds is None:
|
572 |
+
raise ValueError(
|
573 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
574 |
+
)
|
575 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
576 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
577 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
578 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
579 |
+
|
580 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
581 |
+
raise ValueError(
|
582 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
583 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
584 |
+
)
|
585 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
586 |
+
raise ValueError(
|
587 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
588 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
589 |
+
)
|
590 |
+
|
591 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
592 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
593 |
+
raise ValueError(
|
594 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
595 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
596 |
+
f" {negative_prompt_embeds.shape}."
|
597 |
+
)
|
598 |
+
|
599 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
600 |
+
raise ValueError(
|
601 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
602 |
+
)
|
603 |
+
|
604 |
+
if ip_adapter_image_embeds is not None:
|
605 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
606 |
+
raise ValueError(
|
607 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
608 |
+
)
|
609 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
610 |
+
raise ValueError(
|
611 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
612 |
+
)
|
613 |
+
|
614 |
+
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
|
615 |
+
# get the original timestep using init_timestep
|
616 |
+
if denoising_start is None:
|
617 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
618 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
619 |
+
else:
|
620 |
+
t_start = 0
|
621 |
+
|
622 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
623 |
+
|
624 |
+
# Strength is irrelevant if we directly request a timestep to start at;
|
625 |
+
# that is, strength is determined by the denoising_start instead.
|
626 |
+
if denoising_start is not None:
|
627 |
+
discrete_timestep_cutoff = int(
|
628 |
+
round(
|
629 |
+
self.scheduler.config.num_train_timesteps
|
630 |
+
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
631 |
+
)
|
632 |
+
)
|
633 |
+
|
634 |
+
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
|
635 |
+
if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
|
636 |
+
# if the scheduler is a 2nd order scheduler we might have to do +1
|
637 |
+
# because `num_inference_steps` might be even given that every timestep
|
638 |
+
# (except the highest one) is duplicated. If `num_inference_steps` is even it would
|
639 |
+
# mean that we cut the timesteps in the middle of the denoising step
|
640 |
+
# (between 1st and 2nd devirative) which leads to incorrect results. By adding 1
|
641 |
+
# we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
|
642 |
+
num_inference_steps = num_inference_steps + 1
|
643 |
+
|
644 |
+
# because t_n+1 >= t_n, we slice the timesteps starting from the end
|
645 |
+
timesteps = timesteps[-num_inference_steps:]
|
646 |
+
return timesteps, num_inference_steps
|
647 |
+
|
648 |
+
return timesteps, num_inference_steps - t_start
|
649 |
+
|
650 |
+
def prepare_latents(
|
651 |
+
self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
|
652 |
+
):
|
653 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
654 |
+
raise ValueError(
|
655 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
656 |
+
)
|
657 |
+
|
658 |
+
# Offload text encoder if `enable_model_cpu_offload` was enabled
|
659 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
660 |
+
self.text_encoder_2.to("cpu")
|
661 |
+
torch.cuda.empty_cache()
|
662 |
+
|
663 |
+
image = image.to(device=device, dtype=dtype)
|
664 |
+
|
665 |
+
batch_size = batch_size * num_images_per_prompt
|
666 |
+
|
667 |
+
if image.shape[1] == 4:
|
668 |
+
init_latents = image
|
669 |
+
|
670 |
+
else:
|
671 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
672 |
+
if self.vae.config.force_upcast:
|
673 |
+
image = image.float()
|
674 |
+
self.vae.to(dtype=torch.float32)
|
675 |
+
|
676 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
677 |
+
raise ValueError(
|
678 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
679 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
680 |
+
)
|
681 |
+
|
682 |
+
elif isinstance(generator, list):
|
683 |
+
init_latents = [
|
684 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
685 |
+
for i in range(batch_size)
|
686 |
+
]
|
687 |
+
init_latents = torch.cat(init_latents, dim=0)
|
688 |
+
else:
|
689 |
+
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
690 |
+
|
691 |
+
if self.vae.config.force_upcast:
|
692 |
+
self.vae.to(dtype)
|
693 |
+
|
694 |
+
init_latents = init_latents.to(dtype)
|
695 |
+
init_latents = self.vae.config.scaling_factor * init_latents
|
696 |
+
|
697 |
+
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
698 |
+
# expand init_latents for batch_size
|
699 |
+
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
700 |
+
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
701 |
+
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
702 |
+
raise ValueError(
|
703 |
+
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
704 |
+
)
|
705 |
+
else:
|
706 |
+
init_latents = torch.cat([init_latents], dim=0)
|
707 |
+
|
708 |
+
if add_noise:
|
709 |
+
shape = init_latents.shape
|
710 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
711 |
+
# get latents
|
712 |
+
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
713 |
+
|
714 |
+
latents = init_latents
|
715 |
+
|
716 |
+
return latents
|
717 |
+
|
718 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
719 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
720 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
721 |
+
|
722 |
+
if not isinstance(image, torch.Tensor):
|
723 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
724 |
+
|
725 |
+
image = image.to(device=device, dtype=dtype)
|
726 |
+
if output_hidden_states:
|
727 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
728 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
729 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
730 |
+
torch.zeros_like(image), output_hidden_states=True
|
731 |
+
).hidden_states[-2]
|
732 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
733 |
+
num_images_per_prompt, dim=0
|
734 |
+
)
|
735 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
736 |
+
else:
|
737 |
+
image_embeds = self.image_encoder(image).image_embeds
|
738 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
739 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
740 |
+
|
741 |
+
return image_embeds, uncond_image_embeds
|
742 |
+
|
743 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
744 |
+
def prepare_ip_adapter_image_embeds(
|
745 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
746 |
+
):
|
747 |
+
if ip_adapter_image_embeds is None:
|
748 |
+
if not isinstance(ip_adapter_image, list):
|
749 |
+
ip_adapter_image = [ip_adapter_image]
|
750 |
+
|
751 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
752 |
+
raise ValueError(
|
753 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
754 |
+
)
|
755 |
+
|
756 |
+
image_embeds = []
|
757 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
758 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
759 |
+
):
|
760 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
761 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
762 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
763 |
+
)
|
764 |
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
765 |
+
single_negative_image_embeds = torch.stack(
|
766 |
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
767 |
+
)
|
768 |
+
|
769 |
+
if do_classifier_free_guidance:
|
770 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
771 |
+
single_image_embeds = single_image_embeds.to(device)
|
772 |
+
|
773 |
+
image_embeds.append(single_image_embeds)
|
774 |
+
else:
|
775 |
+
repeat_dims = [1]
|
776 |
+
image_embeds = []
|
777 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
778 |
+
if do_classifier_free_guidance:
|
779 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
780 |
+
single_image_embeds = single_image_embeds.repeat(
|
781 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
782 |
+
)
|
783 |
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
784 |
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
785 |
+
)
|
786 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
787 |
+
else:
|
788 |
+
single_image_embeds = single_image_embeds.repeat(
|
789 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
790 |
+
)
|
791 |
+
image_embeds.append(single_image_embeds)
|
792 |
+
|
793 |
+
return image_embeds
|
794 |
+
|
795 |
+
def _get_add_time_ids(
|
796 |
+
self,
|
797 |
+
original_size,
|
798 |
+
crops_coords_top_left,
|
799 |
+
target_size,
|
800 |
+
aesthetic_score,
|
801 |
+
negative_aesthetic_score,
|
802 |
+
negative_original_size,
|
803 |
+
negative_crops_coords_top_left,
|
804 |
+
negative_target_size,
|
805 |
+
dtype,
|
806 |
+
text_encoder_projection_dim=None,
|
807 |
+
):
|
808 |
+
if self.config.requires_aesthetics_score:
|
809 |
+
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
|
810 |
+
add_neg_time_ids = list(
|
811 |
+
negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
|
812 |
+
)
|
813 |
+
else:
|
814 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
815 |
+
add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
|
816 |
+
|
817 |
+
passed_add_embed_dim = (
|
818 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
819 |
+
)
|
820 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
821 |
+
|
822 |
+
if (
|
823 |
+
expected_add_embed_dim > passed_add_embed_dim
|
824 |
+
and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
825 |
+
):
|
826 |
+
raise ValueError(
|
827 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
|
828 |
+
)
|
829 |
+
elif (
|
830 |
+
expected_add_embed_dim < passed_add_embed_dim
|
831 |
+
and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
832 |
+
):
|
833 |
+
raise ValueError(
|
834 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
|
835 |
+
)
|
836 |
+
elif expected_add_embed_dim != passed_add_embed_dim:
|
837 |
+
raise ValueError(
|
838 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
839 |
+
)
|
840 |
+
|
841 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
842 |
+
add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
|
843 |
+
|
844 |
+
return add_time_ids, add_neg_time_ids
|
845 |
+
|
846 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
847 |
+
def upcast_vae(self):
|
848 |
+
dtype = self.vae.dtype
|
849 |
+
self.vae.to(dtype=torch.float32)
|
850 |
+
use_torch_2_0_or_xformers = isinstance(
|
851 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
852 |
+
(
|
853 |
+
AttnProcessor2_0,
|
854 |
+
XFormersAttnProcessor,
|
855 |
+
LoRAXFormersAttnProcessor,
|
856 |
+
LoRAAttnProcessor2_0,
|
857 |
+
),
|
858 |
+
)
|
859 |
+
# if xformers or torch_2_0 is used attention block does not need
|
860 |
+
# to be in float32 which can save lots of memory
|
861 |
+
if use_torch_2_0_or_xformers:
|
862 |
+
self.vae.post_quant_conv.to(dtype)
|
863 |
+
self.vae.decoder.conv_in.to(dtype)
|
864 |
+
self.vae.decoder.mid_block.to(dtype)
|
865 |
+
|
866 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
867 |
+
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
868 |
+
"""
|
869 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
870 |
+
|
871 |
+
Args:
|
872 |
+
timesteps (`torch.Tensor`):
|
873 |
+
generate embedding vectors at these timesteps
|
874 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
875 |
+
dimension of the embeddings to generate
|
876 |
+
dtype:
|
877 |
+
data type of the generated embeddings
|
878 |
+
|
879 |
+
Returns:
|
880 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
881 |
+
"""
|
882 |
+
assert len(w.shape) == 1
|
883 |
+
w = w * 1000.0
|
884 |
+
|
885 |
+
half_dim = embedding_dim // 2
|
886 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
887 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
888 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
889 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
890 |
+
if embedding_dim % 2 == 1: # zero pad
|
891 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
892 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
893 |
+
return emb
|
894 |
+
|
895 |
+
@property
|
896 |
+
def guidance_scale(self):
|
897 |
+
return self._guidance_scale
|
898 |
+
|
899 |
+
@property
|
900 |
+
def guidance_rescale(self):
|
901 |
+
return self._guidance_rescale
|
902 |
+
|
903 |
+
@property
|
904 |
+
def clip_skip(self):
|
905 |
+
return self._clip_skip
|
906 |
+
|
907 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
908 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
909 |
+
# corresponds to doing no classifier free guidance.
|
910 |
+
@property
|
911 |
+
def do_classifier_free_guidance(self):
|
912 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
913 |
+
|
914 |
+
@property
|
915 |
+
def cross_attention_kwargs(self):
|
916 |
+
return self._cross_attention_kwargs
|
917 |
+
|
918 |
+
@property
|
919 |
+
def denoising_end(self):
|
920 |
+
return self._denoising_end
|
921 |
+
|
922 |
+
@property
|
923 |
+
def denoising_start(self):
|
924 |
+
return self._denoising_start
|
925 |
+
|
926 |
+
@property
|
927 |
+
def num_timesteps(self):
|
928 |
+
return self._num_timesteps
|
929 |
+
|
930 |
+
@property
|
931 |
+
def interrupt(self):
|
932 |
+
return self._interrupt
|
933 |
+
|
934 |
+
@torch.no_grad()
|
935 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
936 |
+
def __call__(
|
937 |
+
self,
|
938 |
+
prompt: Union[str, List[str]] = None,
|
939 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
940 |
+
image: PipelineImageInput = None,
|
941 |
+
strength: float = 0.3,
|
942 |
+
num_inference_steps: int = 50,
|
943 |
+
timesteps: List[int] = None,
|
944 |
+
denoising_start: Optional[float] = None,
|
945 |
+
denoising_end: Optional[float] = None,
|
946 |
+
guidance_scale: float = 5.0,
|
947 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
948 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
949 |
+
num_images_per_prompt: Optional[int] = 1,
|
950 |
+
eta: float = 0.0,
|
951 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
952 |
+
latents: Optional[torch.FloatTensor] = None,
|
953 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
954 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
955 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
956 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
957 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
958 |
+
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
959 |
+
output_type: Optional[str] = "pil",
|
960 |
+
return_dict: bool = True,
|
961 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
962 |
+
guidance_rescale: float = 0.0,
|
963 |
+
original_size: Tuple[int, int] = None,
|
964 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
965 |
+
target_size: Tuple[int, int] = None,
|
966 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
967 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
968 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
969 |
+
aesthetic_score: float = 6.0,
|
970 |
+
negative_aesthetic_score: float = 2.5,
|
971 |
+
clip_skip: Optional[int] = None,
|
972 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
973 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
974 |
+
**kwargs,
|
975 |
+
):
|
976 |
+
r"""
|
977 |
+
Function invoked when calling the pipeline for generation.
|
978 |
+
|
979 |
+
Args:
|
980 |
+
prompt (`str` or `List[str]`, *optional*):
|
981 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
982 |
+
instead.
|
983 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
984 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
985 |
+
used in both text-encoders
|
986 |
+
image (`torch.FloatTensor` or `PIL.Image.Image` or `np.ndarray` or `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`):
|
987 |
+
The image(s) to modify with the pipeline.
|
988 |
+
strength (`float`, *optional*, defaults to 0.3):
|
989 |
+
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
|
990 |
+
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
|
991 |
+
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
|
992 |
+
be maximum and the denoising process will run for the full number of iterations specified in
|
993 |
+
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of
|
994 |
+
`denoising_start` being declared as an integer, the value of `strength` will be ignored.
|
995 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
996 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
997 |
+
expense of slower inference.
|
998 |
+
timesteps (`List[int]`, *optional*):
|
999 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1000 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1001 |
+
passed will be used. Must be in descending order.
|
1002 |
+
denoising_start (`float`, *optional*):
|
1003 |
+
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1004 |
+
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
1005 |
+
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
1006 |
+
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
1007 |
+
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image
|
1008 |
+
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
|
1009 |
+
denoising_end (`float`, *optional*):
|
1010 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1011 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
1012 |
+
still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
|
1013 |
+
denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
|
1014 |
+
final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
|
1015 |
+
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refine Image
|
1016 |
+
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
|
1017 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1018 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1019 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1020 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1021 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1022 |
+
usually at the expense of lower image quality.
|
1023 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1024 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
1025 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
1026 |
+
less than `1`).
|
1027 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1028 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
1029 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
1030 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1031 |
+
The number of images to generate per prompt.
|
1032 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1033 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1034 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1035 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1036 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1037 |
+
to make generation deterministic.
|
1038 |
+
latents (`torch.FloatTensor`, *optional*):
|
1039 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1040 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1041 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
1042 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1043 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1044 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
1045 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1046 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1047 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1048 |
+
argument.
|
1049 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1050 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
1051 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
1052 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1053 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1054 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1055 |
+
input argument.
|
1056 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1057 |
+
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
1058 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
|
1059 |
+
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
|
1060 |
+
if `do_classifier_free_guidance` is set to `True`.
|
1061 |
+
If not provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1062 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1063 |
+
The output format of the generate image. Choose between
|
1064 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1065 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1066 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
|
1067 |
+
plain tuple.
|
1068 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1069 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1070 |
+
`self.processor` in
|
1071 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1072 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
1073 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
1074 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
1075 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
1076 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
1077 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1078 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
1079 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
1080 |
+
explained in section 2.2 of
|
1081 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1082 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1083 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1084 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1085 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1086 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1087 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1088 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
1089 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
1090 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1091 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1092 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
1093 |
+
micro-conditioning as explained in section 2.2 of
|
1094 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1095 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1096 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1097 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
1098 |
+
micro-conditioning as explained in section 2.2 of
|
1099 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1100 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1101 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1102 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
1103 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1104 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1105 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1106 |
+
aesthetic_score (`float`, *optional*, defaults to 6.0):
|
1107 |
+
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
|
1108 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1109 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1110 |
+
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
|
1111 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1112 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
|
1113 |
+
simulate an aesthetic score of the generated image by influencing the negative text condition.
|
1114 |
+
clip_skip (`int`, *optional*):
|
1115 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1116 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1117 |
+
callback_on_step_end (`Callable`, *optional*):
|
1118 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
1119 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
1120 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
1121 |
+
`callback_on_step_end_tensor_inputs`.
|
1122 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1123 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1124 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1125 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1126 |
+
|
1127 |
+
Examples:
|
1128 |
+
|
1129 |
+
Returns:
|
1130 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
|
1131 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
1132 |
+
`tuple. When returning a tuple, the first element is a list with the generated images.
|
1133 |
+
"""
|
1134 |
+
|
1135 |
+
callback = kwargs.pop("callback", None)
|
1136 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
1137 |
+
|
1138 |
+
if callback is not None:
|
1139 |
+
deprecate(
|
1140 |
+
"callback",
|
1141 |
+
"1.0.0",
|
1142 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1143 |
+
)
|
1144 |
+
if callback_steps is not None:
|
1145 |
+
deprecate(
|
1146 |
+
"callback_steps",
|
1147 |
+
"1.0.0",
|
1148 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1149 |
+
)
|
1150 |
+
|
1151 |
+
# 1. Check inputs. Raise error if not correct
|
1152 |
+
self.check_inputs(
|
1153 |
+
prompt,
|
1154 |
+
prompt_2,
|
1155 |
+
strength,
|
1156 |
+
num_inference_steps,
|
1157 |
+
callback_steps,
|
1158 |
+
negative_prompt,
|
1159 |
+
negative_prompt_2,
|
1160 |
+
prompt_embeds,
|
1161 |
+
negative_prompt_embeds,
|
1162 |
+
ip_adapter_image,
|
1163 |
+
ip_adapter_image_embeds,
|
1164 |
+
callback_on_step_end_tensor_inputs,
|
1165 |
+
)
|
1166 |
+
|
1167 |
+
self._guidance_scale = guidance_scale
|
1168 |
+
self._guidance_rescale = guidance_rescale
|
1169 |
+
self._clip_skip = clip_skip
|
1170 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1171 |
+
self._denoising_end = denoising_end
|
1172 |
+
self._denoising_start = denoising_start
|
1173 |
+
self._interrupt = False
|
1174 |
+
# 2. Define call parameters
|
1175 |
+
if prompt is not None and isinstance(prompt, str):
|
1176 |
+
batch_size = 1
|
1177 |
+
elif prompt is not None and isinstance(prompt, list):
|
1178 |
+
batch_size = len(prompt)
|
1179 |
+
else:
|
1180 |
+
batch_size = prompt_embeds.shape[0]
|
1181 |
+
|
1182 |
+
device = self._execution_device
|
1183 |
+
|
1184 |
+
# 3. Encode input prompt
|
1185 |
+
text_encoder_lora_scale = (
|
1186 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1187 |
+
)
|
1188 |
+
(
|
1189 |
+
prompt_embeds,
|
1190 |
+
negative_prompt_embeds,
|
1191 |
+
pooled_prompt_embeds,
|
1192 |
+
negative_pooled_prompt_embeds,
|
1193 |
+
) = self.encode_prompt(
|
1194 |
+
prompt=prompt,
|
1195 |
+
prompt_2=prompt_2,
|
1196 |
+
device=device,
|
1197 |
+
num_images_per_prompt=num_images_per_prompt,
|
1198 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1199 |
+
negative_prompt=negative_prompt,
|
1200 |
+
negative_prompt_2=negative_prompt_2,
|
1201 |
+
prompt_embeds=prompt_embeds,
|
1202 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1203 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1204 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1205 |
+
lora_scale=text_encoder_lora_scale,
|
1206 |
+
clip_skip=self.clip_skip,
|
1207 |
+
)
|
1208 |
+
# 4. Preprocess image
|
1209 |
+
image = self.image_processor.preprocess(image)
|
1210 |
+
|
1211 |
+
# 5. Prepare timesteps
|
1212 |
+
def denoising_value_valid(dnv):
|
1213 |
+
return isinstance(dnv, float) and 0 < dnv < 1
|
1214 |
+
|
1215 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
1216 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
1217 |
+
num_inference_steps,
|
1218 |
+
strength,
|
1219 |
+
device,
|
1220 |
+
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
|
1221 |
+
)
|
1222 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1223 |
+
|
1224 |
+
add_noise = True if self.denoising_start is None else False
|
1225 |
+
# 6. Prepare latent variables
|
1226 |
+
latents = self.prepare_latents(
|
1227 |
+
image,
|
1228 |
+
latent_timestep,
|
1229 |
+
batch_size,
|
1230 |
+
num_images_per_prompt,
|
1231 |
+
prompt_embeds.dtype,
|
1232 |
+
device,
|
1233 |
+
generator,
|
1234 |
+
add_noise,
|
1235 |
+
)
|
1236 |
+
# 7. Prepare extra step kwargs.
|
1237 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1238 |
+
|
1239 |
+
height, width = latents.shape[-2:]
|
1240 |
+
height = height * self.vae_scale_factor
|
1241 |
+
width = width * self.vae_scale_factor
|
1242 |
+
|
1243 |
+
original_size = original_size or (height, width)
|
1244 |
+
target_size = target_size or (height, width)
|
1245 |
+
|
1246 |
+
# 8. Prepare added time ids & embeddings
|
1247 |
+
if negative_original_size is None:
|
1248 |
+
negative_original_size = original_size
|
1249 |
+
if negative_target_size is None:
|
1250 |
+
negative_target_size = target_size
|
1251 |
+
|
1252 |
+
add_text_embeds = pooled_prompt_embeds
|
1253 |
+
if self.text_encoder_2 is None:
|
1254 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1255 |
+
else:
|
1256 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1257 |
+
|
1258 |
+
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
|
1259 |
+
original_size,
|
1260 |
+
crops_coords_top_left,
|
1261 |
+
target_size,
|
1262 |
+
aesthetic_score,
|
1263 |
+
negative_aesthetic_score,
|
1264 |
+
negative_original_size,
|
1265 |
+
negative_crops_coords_top_left,
|
1266 |
+
negative_target_size,
|
1267 |
+
dtype=prompt_embeds.dtype,
|
1268 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1269 |
+
)
|
1270 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1271 |
+
|
1272 |
+
if self.do_classifier_free_guidance:
|
1273 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1274 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1275 |
+
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1276 |
+
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
1277 |
+
|
1278 |
+
prompt_embeds = prompt_embeds.to(device)
|
1279 |
+
add_text_embeds = add_text_embeds.to(device)
|
1280 |
+
add_time_ids = add_time_ids.to(device)
|
1281 |
+
|
1282 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1283 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1284 |
+
ip_adapter_image,
|
1285 |
+
ip_adapter_image_embeds,
|
1286 |
+
device,
|
1287 |
+
batch_size * num_images_per_prompt,
|
1288 |
+
self.do_classifier_free_guidance,
|
1289 |
+
)
|
1290 |
+
|
1291 |
+
# 9. Denoising loop
|
1292 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1293 |
+
|
1294 |
+
# 9.1 Apply denoising_end
|
1295 |
+
if (
|
1296 |
+
self.denoising_end is not None
|
1297 |
+
and self.denoising_start is not None
|
1298 |
+
and denoising_value_valid(self.denoising_end)
|
1299 |
+
and denoising_value_valid(self.denoising_start)
|
1300 |
+
and self.denoising_start >= self.denoising_end
|
1301 |
+
):
|
1302 |
+
raise ValueError(
|
1303 |
+
f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
|
1304 |
+
+ f" {self.denoising_end} when using type float."
|
1305 |
+
)
|
1306 |
+
elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
|
1307 |
+
discrete_timestep_cutoff = int(
|
1308 |
+
round(
|
1309 |
+
self.scheduler.config.num_train_timesteps
|
1310 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
1311 |
+
)
|
1312 |
+
)
|
1313 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1314 |
+
timesteps = timesteps[:num_inference_steps]
|
1315 |
+
|
1316 |
+
# 9.2 Optionally get Guidance Scale Embedding
|
1317 |
+
timestep_cond = None
|
1318 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
1319 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1320 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
1321 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1322 |
+
).to(device=device, dtype=latents.dtype)
|
1323 |
+
|
1324 |
+
self._num_timesteps = len(timesteps)
|
1325 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1326 |
+
for i, t in enumerate(timesteps):
|
1327 |
+
if self.interrupt:
|
1328 |
+
continue
|
1329 |
+
|
1330 |
+
# expand the latents if we are doing classifier free guidance
|
1331 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1332 |
+
|
1333 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1334 |
+
|
1335 |
+
# predict the noise residual
|
1336 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1337 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1338 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1339 |
+
noise_pred = self.unet(
|
1340 |
+
latent_model_input,
|
1341 |
+
t,
|
1342 |
+
encoder_hidden_states=prompt_embeds,
|
1343 |
+
timestep_cond=timestep_cond,
|
1344 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1345 |
+
added_cond_kwargs=added_cond_kwargs,
|
1346 |
+
return_dict=False,
|
1347 |
+
)[0]
|
1348 |
+
|
1349 |
+
# perform guidance
|
1350 |
+
if self.do_classifier_free_guidance:
|
1351 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1352 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1353 |
+
|
1354 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1355 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1356 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1357 |
+
|
1358 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1359 |
+
|
1360 |
+
########################## changed section ##########################
|
1361 |
+
# dift_features = self.unet.latent_store.dift_features[f'{t.item()}_0']
|
1362 |
+
dift_features = self.unet.latent_store.smoothed_dift_features[f'{t.item()}_1']
|
1363 |
+
|
1364 |
+
|
1365 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs,
|
1366 |
+
noise_pred_uncond= noise_pred_uncond if self.do_classifier_free_guidance else noise_pred,
|
1367 |
+
dift_features=dift_features,
|
1368 |
+
return_dict=False)[0]
|
1369 |
+
#####################################################################
|
1370 |
+
|
1371 |
+
if callback_on_step_end is not None:
|
1372 |
+
callback_kwargs = {}
|
1373 |
+
for k in callback_on_step_end_tensor_inputs:
|
1374 |
+
callback_kwargs[k] = locals()[k]
|
1375 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1376 |
+
|
1377 |
+
latents = callback_outputs.pop("latents", latents)
|
1378 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1379 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1380 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
1381 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1382 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1383 |
+
)
|
1384 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1385 |
+
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
|
1386 |
+
|
1387 |
+
# call the callback, if provided
|
1388 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1389 |
+
progress_bar.update()
|
1390 |
+
if callback is not None and i % callback_steps == 0:
|
1391 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1392 |
+
callback(step_idx, t, latents)
|
1393 |
+
|
1394 |
+
if XLA_AVAILABLE:
|
1395 |
+
xm.mark_step()
|
1396 |
+
|
1397 |
+
if not output_type == "latent":
|
1398 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1399 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1400 |
+
|
1401 |
+
if needs_upcasting:
|
1402 |
+
self.upcast_vae()
|
1403 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1404 |
+
|
1405 |
+
# unscale/denormalize the latents
|
1406 |
+
# denormalize with the mean and std if available and not None
|
1407 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
1408 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
1409 |
+
if has_latents_mean and has_latents_std:
|
1410 |
+
latents_mean = (
|
1411 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1412 |
+
)
|
1413 |
+
latents_std = (
|
1414 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1415 |
+
)
|
1416 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
1417 |
+
else:
|
1418 |
+
latents = latents / self.vae.config.scaling_factor
|
1419 |
+
|
1420 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1421 |
+
|
1422 |
+
# cast back to fp16 if needed
|
1423 |
+
if needs_upcasting:
|
1424 |
+
self.vae.to(dtype=torch.float16)
|
1425 |
+
else:
|
1426 |
+
image = latents
|
1427 |
+
|
1428 |
+
# apply watermark if available
|
1429 |
+
if self.watermark is not None:
|
1430 |
+
image = self.watermark.apply_watermark(image)
|
1431 |
+
|
1432 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1433 |
+
|
1434 |
+
# Offload all models
|
1435 |
+
self.maybe_free_model_hooks()
|
1436 |
+
|
1437 |
+
if not return_dict:
|
1438 |
+
return (image,)
|
1439 |
+
|
1440 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
model/unet_sdxl.py
ADDED
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified only lines 360–365; search for 'changed section' to locate the update easily.
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.utils.checkpoint
|
9 |
+
|
10 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
11 |
+
from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
|
12 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
13 |
+
from diffusers.models.activations import get_activation
|
14 |
+
from diffusers.models.attention_processor import (
|
15 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
16 |
+
CROSS_ATTENTION_PROCESSORS,
|
17 |
+
Attention,
|
18 |
+
AttentionProcessor,
|
19 |
+
AttnAddedKVProcessor,
|
20 |
+
AttnProcessor,
|
21 |
+
)
|
22 |
+
from diffusers.models.embeddings import (
|
23 |
+
GaussianFourierProjection,
|
24 |
+
GLIGENTextBoundingboxProjection,
|
25 |
+
ImageHintTimeEmbedding,
|
26 |
+
ImageProjection,
|
27 |
+
ImageTimeEmbedding,
|
28 |
+
TextImageProjection,
|
29 |
+
TextImageTimeEmbedding,
|
30 |
+
TextTimeEmbedding,
|
31 |
+
TimestepEmbedding,
|
32 |
+
Timesteps,
|
33 |
+
)
|
34 |
+
from diffusers.models.modeling_utils import ModelMixin
|
35 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
36 |
+
get_down_block,
|
37 |
+
get_mid_block,
|
38 |
+
get_up_block,
|
39 |
+
)
|
40 |
+
|
41 |
+
from diffusers.models.unets import UNet2DConditionModel
|
42 |
+
from model.modules.dift_utils import DIFTLatentStore
|
43 |
+
|
44 |
+
|
45 |
+
@dataclass
|
46 |
+
class UNet2DConditionOutput(BaseOutput):
|
47 |
+
sample: torch.FloatTensor = None
|
48 |
+
|
49 |
+
class OursUNet2DConditionModel(UNet2DConditionModel):
|
50 |
+
_supports_gradient_checkpointing = True
|
51 |
+
|
52 |
+
@register_to_config
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
sample_size: Optional[int] = None,
|
56 |
+
in_channels: int = 4,
|
57 |
+
out_channels: int = 4,
|
58 |
+
center_input_sample: bool = False,
|
59 |
+
flip_sin_to_cos: bool = True,
|
60 |
+
freq_shift: int = 0,
|
61 |
+
down_block_types: Tuple[str] = (
|
62 |
+
"CrossAttnDownBlock2D",
|
63 |
+
"CrossAttnDownBlock2D",
|
64 |
+
"CrossAttnDownBlock2D",
|
65 |
+
"DownBlock2D",
|
66 |
+
),
|
67 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
68 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
69 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
70 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
71 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
72 |
+
downsample_padding: int = 1,
|
73 |
+
mid_block_scale_factor: float = 1,
|
74 |
+
dropout: float = 0.0,
|
75 |
+
act_fn: str = "silu",
|
76 |
+
norm_num_groups: Optional[int] = 32,
|
77 |
+
norm_eps: float = 1e-5,
|
78 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
79 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
80 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
81 |
+
encoder_hid_dim: Optional[int] = None,
|
82 |
+
encoder_hid_dim_type: Optional[str] = None,
|
83 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
84 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
85 |
+
dual_cross_attention: bool = False,
|
86 |
+
use_linear_projection: bool = False,
|
87 |
+
class_embed_type: Optional[str] = None,
|
88 |
+
addition_embed_type: Optional[str] = None,
|
89 |
+
addition_time_embed_dim: Optional[int] = None,
|
90 |
+
num_class_embeds: Optional[int] = None,
|
91 |
+
upcast_attention: bool = False,
|
92 |
+
resnet_time_scale_shift: str = "default",
|
93 |
+
resnet_skip_time_act: bool = False,
|
94 |
+
resnet_out_scale_factor: float = 1.0,
|
95 |
+
time_embedding_type: str = "positional",
|
96 |
+
time_embedding_dim: Optional[int] = None,
|
97 |
+
time_embedding_act_fn: Optional[str] = None,
|
98 |
+
timestep_post_act: Optional[str] = None,
|
99 |
+
time_cond_proj_dim: Optional[int] = None,
|
100 |
+
conv_in_kernel: int = 3,
|
101 |
+
conv_out_kernel: int = 3,
|
102 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
103 |
+
attention_type: str = "default",
|
104 |
+
class_embeddings_concat: bool = False,
|
105 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
106 |
+
cross_attention_norm: Optional[str] = None,
|
107 |
+
addition_embed_type_num_heads: int = 64,
|
108 |
+
steps: List[int] = list(range(1, 1000)),
|
109 |
+
):
|
110 |
+
super().__init__(
|
111 |
+
sample_size=sample_size,
|
112 |
+
in_channels=in_channels,
|
113 |
+
out_channels=out_channels,
|
114 |
+
center_input_sample=center_input_sample,
|
115 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
116 |
+
freq_shift=freq_shift,
|
117 |
+
down_block_types=down_block_types,
|
118 |
+
mid_block_type=mid_block_type,
|
119 |
+
up_block_types=up_block_types,
|
120 |
+
only_cross_attention=only_cross_attention,
|
121 |
+
block_out_channels=block_out_channels,
|
122 |
+
layers_per_block=layers_per_block,
|
123 |
+
downsample_padding=downsample_padding,
|
124 |
+
mid_block_scale_factor=mid_block_scale_factor,
|
125 |
+
dropout=dropout,
|
126 |
+
act_fn=act_fn,
|
127 |
+
norm_num_groups=norm_num_groups,
|
128 |
+
norm_eps=norm_eps,
|
129 |
+
cross_attention_dim=cross_attention_dim,
|
130 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
131 |
+
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
|
132 |
+
encoder_hid_dim=encoder_hid_dim,
|
133 |
+
encoder_hid_dim_type=encoder_hid_dim_type,
|
134 |
+
attention_head_dim=attention_head_dim,
|
135 |
+
num_attention_heads=num_attention_heads,
|
136 |
+
dual_cross_attention=dual_cross_attention,
|
137 |
+
use_linear_projection=use_linear_projection,
|
138 |
+
class_embed_type=class_embed_type,
|
139 |
+
addition_embed_type=addition_embed_type,
|
140 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
141 |
+
num_class_embeds=num_class_embeds,
|
142 |
+
upcast_attention=upcast_attention,
|
143 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
144 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
145 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
146 |
+
time_embedding_type=time_embedding_type,
|
147 |
+
time_embedding_dim=time_embedding_dim,
|
148 |
+
time_embedding_act_fn=time_embedding_act_fn,
|
149 |
+
timestep_post_act=timestep_post_act,
|
150 |
+
time_cond_proj_dim=time_cond_proj_dim,
|
151 |
+
conv_in_kernel=conv_in_kernel,
|
152 |
+
conv_out_kernel=conv_out_kernel,
|
153 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
154 |
+
attention_type=attention_type,
|
155 |
+
class_embeddings_concat=class_embeddings_concat,
|
156 |
+
mid_block_only_cross_attention=mid_block_only_cross_attention,
|
157 |
+
cross_attention_norm=cross_attention_norm,
|
158 |
+
addition_embed_type_num_heads=addition_embed_type_num_heads,
|
159 |
+
)
|
160 |
+
|
161 |
+
self.latent_store = DIFTLatentStore(steps=steps, up_ft_indices=[0, 1, 2])
|
162 |
+
|
163 |
+
def forward(
|
164 |
+
self,
|
165 |
+
sample: torch.FloatTensor,
|
166 |
+
timestep: Union[torch.Tensor, float, int],
|
167 |
+
encoder_hidden_states: torch.Tensor,
|
168 |
+
class_labels: Optional[torch.Tensor] = None,
|
169 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
170 |
+
attention_mask: Optional[torch.Tensor] = None,
|
171 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
172 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
173 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
174 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
175 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
176 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
177 |
+
return_dict: bool = True,
|
178 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
179 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
180 |
+
|
181 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
182 |
+
forward_upsample_size = False
|
183 |
+
upsample_size = None
|
184 |
+
|
185 |
+
for dim in sample.shape[-2:]:
|
186 |
+
if dim % default_overall_up_factor != 0:
|
187 |
+
# Forward upsample size to force interpolation output size.
|
188 |
+
forward_upsample_size = True
|
189 |
+
break
|
190 |
+
|
191 |
+
if attention_mask is not None:
|
192 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
193 |
+
attention_mask = attention_mask.unsqueeze(1)
|
194 |
+
|
195 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
196 |
+
if encoder_attention_mask is not None:
|
197 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
198 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
199 |
+
|
200 |
+
# 0. center input if necessary
|
201 |
+
if self.config.center_input_sample:
|
202 |
+
sample = 2 * sample - 1.0
|
203 |
+
|
204 |
+
# 1. time
|
205 |
+
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
206 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
207 |
+
aug_emb = None
|
208 |
+
|
209 |
+
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
210 |
+
if class_emb is not None:
|
211 |
+
if self.config.class_embeddings_concat:
|
212 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
213 |
+
else:
|
214 |
+
emb = emb + class_emb
|
215 |
+
|
216 |
+
aug_emb = self.get_aug_embed(
|
217 |
+
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
218 |
+
)
|
219 |
+
if self.config.addition_embed_type == "image_hint":
|
220 |
+
aug_emb, hint = aug_emb
|
221 |
+
sample = torch.cat([sample, hint], dim=1)
|
222 |
+
|
223 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
224 |
+
|
225 |
+
if self.time_embed_act is not None:
|
226 |
+
emb = self.time_embed_act(emb)
|
227 |
+
|
228 |
+
encoder_hidden_states = self.process_encoder_hidden_states(
|
229 |
+
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
230 |
+
)
|
231 |
+
|
232 |
+
# 2. pre-process
|
233 |
+
sample = self.conv_in(sample)
|
234 |
+
|
235 |
+
# 2.5 GLIGEN position net
|
236 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
237 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
238 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
239 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
240 |
+
|
241 |
+
# 3. down
|
242 |
+
# we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
|
243 |
+
# to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
|
244 |
+
if cross_attention_kwargs is not None:
|
245 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
246 |
+
lora_scale = cross_attention_kwargs.pop("scale", 1.0)
|
247 |
+
else:
|
248 |
+
lora_scale = 1.0
|
249 |
+
|
250 |
+
if USE_PEFT_BACKEND:
|
251 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
252 |
+
scale_lora_layers(self, lora_scale)
|
253 |
+
|
254 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
255 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
256 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
257 |
+
|
258 |
+
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
259 |
+
deprecate(
|
260 |
+
"T2I should not use down_block_additional_residuals",
|
261 |
+
"1.3.0",
|
262 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
263 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
264 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
265 |
+
standard_warn=False,
|
266 |
+
)
|
267 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
268 |
+
is_adapter = True
|
269 |
+
|
270 |
+
down_block_res_samples = (sample,)
|
271 |
+
for downsample_block in self.down_blocks:
|
272 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
273 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
274 |
+
additional_residuals = {}
|
275 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
276 |
+
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
277 |
+
|
278 |
+
sample, res_samples = downsample_block(
|
279 |
+
hidden_states=sample,
|
280 |
+
temb=emb,
|
281 |
+
encoder_hidden_states=encoder_hidden_states,
|
282 |
+
attention_mask=attention_mask,
|
283 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
284 |
+
encoder_attention_mask=encoder_attention_mask,
|
285 |
+
**additional_residuals,
|
286 |
+
)
|
287 |
+
else:
|
288 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
289 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
290 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
291 |
+
|
292 |
+
down_block_res_samples += res_samples
|
293 |
+
|
294 |
+
if is_controlnet:
|
295 |
+
new_down_block_res_samples = ()
|
296 |
+
|
297 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
298 |
+
down_block_res_samples, down_block_additional_residuals
|
299 |
+
):
|
300 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
301 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
302 |
+
|
303 |
+
down_block_res_samples = new_down_block_res_samples
|
304 |
+
|
305 |
+
# 4. mid
|
306 |
+
if self.mid_block is not None:
|
307 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
308 |
+
sample = self.mid_block(
|
309 |
+
sample,
|
310 |
+
emb,
|
311 |
+
encoder_hidden_states=encoder_hidden_states,
|
312 |
+
attention_mask=attention_mask,
|
313 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
314 |
+
encoder_attention_mask=encoder_attention_mask,
|
315 |
+
)
|
316 |
+
else:
|
317 |
+
sample = self.mid_block(sample, emb)
|
318 |
+
|
319 |
+
# To support T2I-Adapter-XL
|
320 |
+
if (
|
321 |
+
is_adapter
|
322 |
+
and len(down_intrablock_additional_residuals) > 0
|
323 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
324 |
+
):
|
325 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
326 |
+
|
327 |
+
if is_controlnet:
|
328 |
+
sample = sample + mid_block_additional_residual
|
329 |
+
|
330 |
+
# 5. up
|
331 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
332 |
+
is_final_block = i == len(self.up_blocks) - 1
|
333 |
+
|
334 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
335 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
336 |
+
|
337 |
+
# if we have not reached the final block and need to forward the
|
338 |
+
# upsample size, we do it here
|
339 |
+
if not is_final_block and forward_upsample_size:
|
340 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
341 |
+
|
342 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
343 |
+
sample = upsample_block(
|
344 |
+
hidden_states=sample,
|
345 |
+
temb=emb,
|
346 |
+
res_hidden_states_tuple=res_samples,
|
347 |
+
encoder_hidden_states=encoder_hidden_states,
|
348 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
349 |
+
upsample_size=upsample_size,
|
350 |
+
attention_mask=attention_mask,
|
351 |
+
encoder_attention_mask=encoder_attention_mask,
|
352 |
+
)
|
353 |
+
else:
|
354 |
+
sample = upsample_block(
|
355 |
+
hidden_states=sample,
|
356 |
+
temb=emb,
|
357 |
+
res_hidden_states_tuple=res_samples,
|
358 |
+
upsample_size=upsample_size,
|
359 |
+
)
|
360 |
+
|
361 |
+
########################## changed section ##########################
|
362 |
+
self.latent_store(sample.detach(), t=timestep, layer_index=i)
|
363 |
+
self.latent_store.smooth(kernel_size=3, sigma=1)
|
364 |
+
#####################################################################
|
365 |
+
|
366 |
+
# 6. post-process
|
367 |
+
if self.conv_norm_out:
|
368 |
+
sample = self.conv_norm_out(sample)
|
369 |
+
sample = self.conv_act(sample)
|
370 |
+
sample = self.conv_out(sample)
|
371 |
+
|
372 |
+
if USE_PEFT_BACKEND:
|
373 |
+
# remove `lora_scale` from each PEFT layer
|
374 |
+
unscale_lora_layers(self, lora_scale)
|
375 |
+
|
376 |
+
if not return_dict:
|
377 |
+
return (sample,)
|
378 |
+
|
379 |
+
return UNet2DConditionOutput(sample=sample)
|
380 |
+
|
381 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.5.1
|
2 |
+
torchvision==0.20.1
|
3 |
+
ml-collections==0.1.1
|
4 |
+
diffusers>=0.29.0
|
5 |
+
transformers>=4.46
|
6 |
+
accelerate==0.33.0
|
7 |
+
json-with-comments==1.2.7
|
8 |
+
gradio
|
9 |
+
spaces
|
10 |
+
scipy
|
11 |
+
einops
|
12 |
+
scikit-learn
|
13 |
+
opencv-python
|
14 |
+
rembg
|
15 |
+
onnxruntime
|
src/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .ddpm_inversion import get_ddpm_inversion_scheduler
|
src/ddpm_inversion.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import Tensor
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from typing import Optional, Union, Tuple
|
5 |
+
from utils import normalize
|
6 |
+
from model import freq_exp, gen_nn_map
|
7 |
+
from src.ddpm_step import deterministic_ddpm_step
|
8 |
+
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
|
9 |
+
|
10 |
+
|
11 |
+
# Kernel sizes for the DIFT correction at successive time-ranges
|
12 |
+
DIFT_KERNELS: Tuple[int, int, int, int] = (12, 7, 5, 3)
|
13 |
+
|
14 |
+
def _get_kernel_for_timestep(timestep: int) -> Tuple[int, int]:
|
15 |
+
if timestep >= 799:
|
16 |
+
return DIFT_KERNELS[0], 1
|
17 |
+
if timestep >= 599:
|
18 |
+
return DIFT_KERNELS[1], 1
|
19 |
+
if timestep >= 299:
|
20 |
+
return DIFT_KERNELS[2], 1
|
21 |
+
return DIFT_KERNELS[3], 1
|
22 |
+
|
23 |
+
def step_save_latents(
|
24 |
+
self,
|
25 |
+
model_output: torch.FloatTensor,
|
26 |
+
timestep: int,
|
27 |
+
sample: torch.FloatTensor,
|
28 |
+
return_dict: bool = True,
|
29 |
+
noise_pred_uncond: Optional[torch.FloatTensor] = None,
|
30 |
+
**kwargs,
|
31 |
+
):
|
32 |
+
timestep_index = self._timesteps.index(timestep)
|
33 |
+
next_timestep_index = timestep_index + 1
|
34 |
+
|
35 |
+
u_hat_t, beta_coef = deterministic_ddpm_step(
|
36 |
+
model_output=model_output,
|
37 |
+
timestep=timestep,
|
38 |
+
sample=sample,
|
39 |
+
scheduler=self,
|
40 |
+
)
|
41 |
+
|
42 |
+
x_t_minus_1 = self.x_ts[next_timestep_index]
|
43 |
+
self.x_ts_c_predicted.append(u_hat_t)
|
44 |
+
|
45 |
+
z_t = x_t_minus_1 - u_hat_t
|
46 |
+
self.latents.append(z_t)
|
47 |
+
|
48 |
+
z_t, _ = normalize(z_t, timestep_index, self._config.max_norm_zs)
|
49 |
+
|
50 |
+
x_t_minus_1_predicted = u_hat_t + z_t
|
51 |
+
|
52 |
+
if not return_dict:
|
53 |
+
return (x_t_minus_1_predicted,)
|
54 |
+
|
55 |
+
return DDIMSchedulerOutput(prev_sample=x_t_minus_1, pred_original_sample=None)
|
56 |
+
|
57 |
+
|
58 |
+
def step_use_latents(
|
59 |
+
self,
|
60 |
+
model_output: torch.FloatTensor,
|
61 |
+
timestep: int,
|
62 |
+
sample: torch.FloatTensor,
|
63 |
+
return_dict: bool = True,
|
64 |
+
noise_pred_uncond: Optional[torch.FloatTensor] = None,
|
65 |
+
**kwargs,
|
66 |
+
):
|
67 |
+
timestep_index = self._timesteps.index(timestep)
|
68 |
+
next_timestep_index = timestep_index + 1
|
69 |
+
|
70 |
+
z_t = self.latents[next_timestep_index]
|
71 |
+
_, normalize_coefficient = normalize(
|
72 |
+
z_t,
|
73 |
+
timestep_index,
|
74 |
+
self._config.max_norm_zs,
|
75 |
+
)
|
76 |
+
|
77 |
+
x_t_hat_c_hat, beta_coef = deterministic_ddpm_step(
|
78 |
+
model_output=model_output,
|
79 |
+
timestep=timestep,
|
80 |
+
sample=sample,
|
81 |
+
scheduler=self,
|
82 |
+
)
|
83 |
+
|
84 |
+
x_t_minus_1_exact = self.x_ts[next_timestep_index]
|
85 |
+
x_t_minus_1_exact = x_t_minus_1_exact.expand_as(x_t_hat_c_hat)
|
86 |
+
|
87 |
+
x_t_c_predicted: torch.Tensor = self.x_ts_c_predicted[next_timestep_index]
|
88 |
+
|
89 |
+
x_t_c = x_t_c_predicted[0].expand_as(x_t_hat_c_hat)
|
90 |
+
|
91 |
+
mask: Optional[Tensor] = kwargs.get("mask", None)
|
92 |
+
if mask is not None and timestep > 300:
|
93 |
+
mask = mask.to(x_t_hat_c_hat.device)
|
94 |
+
movement_intensifier = kwargs.get("movement_intensifier", 0.0)
|
95 |
+
|
96 |
+
if timestep > 900 and movement_intensifier > 0.0:
|
97 |
+
latent_mask_h, *_ = freq_exp(
|
98 |
+
x_t_hat_c_hat[1:],
|
99 |
+
"auto_mask",
|
100 |
+
None,
|
101 |
+
mask.unsqueeze(0),
|
102 |
+
movement_intensifier
|
103 |
+
)
|
104 |
+
x_t_hat_c_hat[1:] = latent_mask_h
|
105 |
+
|
106 |
+
x_t_hat_c_hat[-1] = x_t_hat_c_hat[-1] * mask + (1-mask) * x_t_c[-1]
|
107 |
+
|
108 |
+
edit_prompts_num = model_output.size(0) // 2
|
109 |
+
x_t_hat_c_indices = (
|
110 |
+
0,
|
111 |
+
edit_prompts_num,
|
112 |
+
)
|
113 |
+
edit_images_indices = (
|
114 |
+
edit_prompts_num,
|
115 |
+
(model_output.size(0)),
|
116 |
+
)
|
117 |
+
|
118 |
+
x_t_hat_c = torch.zeros_like(x_t_hat_c_hat)
|
119 |
+
x_t_hat_c[edit_images_indices[0] : edit_images_indices[1]] = x_t_hat_c_hat[
|
120 |
+
x_t_hat_c_indices[0] : x_t_hat_c_indices[1]
|
121 |
+
]
|
122 |
+
|
123 |
+
w1 = kwargs.get("w1", 1.9)
|
124 |
+
cross_prompt_term = x_t_hat_c_hat - x_t_hat_c
|
125 |
+
cross_trajectory_term = x_t_hat_c - normalize_coefficient * x_t_c
|
126 |
+
|
127 |
+
x_t_minus_1_hat_ = (
|
128 |
+
normalize_coefficient * x_t_minus_1_exact
|
129 |
+
+ cross_trajectory_term
|
130 |
+
+ w1 * cross_prompt_term
|
131 |
+
)
|
132 |
+
|
133 |
+
x_t_minus_1_hat_[x_t_hat_c_indices[0] : x_t_hat_c_indices[1]] = x_t_minus_1_hat_[
|
134 |
+
edit_images_indices[0] : edit_images_indices[1]
|
135 |
+
]
|
136 |
+
|
137 |
+
dift_timestep = kwargs.get("dift_timestep", 700)
|
138 |
+
|
139 |
+
if timestep < dift_timestep and kwargs.get("apply_dift_correction", False):
|
140 |
+
z_t = torch.cat([z_t]*x_t_hat_c_hat.shape[0], dim=0)
|
141 |
+
|
142 |
+
dift_features: Optional[Tensor] = kwargs.get("dift_features", None)
|
143 |
+
dift_s, _, dift_t = dift_features.chunk(3)
|
144 |
+
|
145 |
+
resized_src_features = F.interpolate(dift_s[0].unsqueeze(0), size=z_t.shape[-1], mode='bilinear', align_corners=False).squeeze(0)
|
146 |
+
resized_tgt_features = F.interpolate(dift_t[0].unsqueeze(0), size=z_t.shape[-1], mode='bilinear', align_corners=False).squeeze(0)
|
147 |
+
|
148 |
+
kernel_size, stride = _get_kernel_for_timestep(timestep)
|
149 |
+
torch.cuda.empty_cache()
|
150 |
+
|
151 |
+
updated_z_t = gen_nn_map(z_t[1], resized_src_features, resized_tgt_features,
|
152 |
+
kernel_size=kernel_size, stride=stride,
|
153 |
+
device=z_t.device, timestep=timestep)
|
154 |
+
|
155 |
+
alpha = 1.0
|
156 |
+
z_t[1] = alpha * updated_z_t + (1 - alpha) * z_t[1]
|
157 |
+
|
158 |
+
x_t_minus_1_hat = x_t_hat_c_hat + z_t * normalize_coefficient
|
159 |
+
else:
|
160 |
+
x_t_minus_1_hat = x_t_minus_1_hat_
|
161 |
+
|
162 |
+
if not return_dict:
|
163 |
+
return (x_t_minus_1_hat,)
|
164 |
+
|
165 |
+
return DDIMSchedulerOutput(
|
166 |
+
prev_sample=x_t_minus_1_hat,
|
167 |
+
pred_original_sample=None,
|
168 |
+
)
|
169 |
+
|
170 |
+
|
171 |
+
def get_ddpm_inversion_scheduler(
|
172 |
+
scheduler,
|
173 |
+
config,
|
174 |
+
timesteps,
|
175 |
+
latents,
|
176 |
+
x_ts,
|
177 |
+
**kwargs,
|
178 |
+
):
|
179 |
+
def step(
|
180 |
+
model_output: torch.FloatTensor,
|
181 |
+
timestep: int,
|
182 |
+
sample: torch.FloatTensor,
|
183 |
+
eta: float = 0.0,
|
184 |
+
use_clipped_model_output: bool = False,
|
185 |
+
generator=None,
|
186 |
+
variance_noise: Optional[torch.FloatTensor] = None,
|
187 |
+
noise_pred_uncond: Optional[torch.FloatTensor] = None,
|
188 |
+
dift_features: Optional[torch.FloatTensor] = None,
|
189 |
+
return_dict: bool = True,
|
190 |
+
):
|
191 |
+
# predict and save x_t_c
|
192 |
+
res_inv = step_save_latents(
|
193 |
+
scheduler,
|
194 |
+
model_output[:1, :, :, :],
|
195 |
+
timestep,
|
196 |
+
sample[:1, :, :, :],
|
197 |
+
return_dict,
|
198 |
+
noise_pred_uncond[:1, :, :, :],
|
199 |
+
**kwargs,
|
200 |
+
)
|
201 |
+
|
202 |
+
res_inf = step_use_latents(
|
203 |
+
scheduler,
|
204 |
+
model_output[1:, :, :, :],
|
205 |
+
timestep,
|
206 |
+
sample[1:, :, :, :],
|
207 |
+
return_dict,
|
208 |
+
noise_pred_uncond[1:, :, :, :],
|
209 |
+
dift_features=dift_features,
|
210 |
+
**kwargs,
|
211 |
+
)
|
212 |
+
res = (torch.cat((res_inv[0], res_inf[0]), dim=0),)
|
213 |
+
return res
|
214 |
+
|
215 |
+
scheduler._timesteps = timesteps
|
216 |
+
scheduler._config = config
|
217 |
+
scheduler.latents = latents
|
218 |
+
scheduler.x_ts = x_ts
|
219 |
+
scheduler.x_ts_c_predicted = [None]
|
220 |
+
scheduler.step = step
|
221 |
+
return scheduler
|
222 |
+
|
src/ddpm_step.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Union
|
3 |
+
|
4 |
+
def deterministic_ddpm_step(
|
5 |
+
model_output: torch.FloatTensor,
|
6 |
+
timestep: Union[float, torch.FloatTensor],
|
7 |
+
sample: torch.FloatTensor,
|
8 |
+
scheduler,
|
9 |
+
):
|
10 |
+
"""
|
11 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
12 |
+
process from the learned model outputs (most often the predicted noise).
|
13 |
+
"""
|
14 |
+
t = timestep
|
15 |
+
|
16 |
+
prev_t = scheduler.previous_timestep(t)
|
17 |
+
|
18 |
+
if model_output.shape[1] == sample.shape[1] * 2 and scheduler.variance_type in [
|
19 |
+
"learned",
|
20 |
+
"learned_range",
|
21 |
+
]:
|
22 |
+
model_output, predicted_variance = torch.split(
|
23 |
+
model_output, sample.shape[1], dim=1
|
24 |
+
)
|
25 |
+
else:
|
26 |
+
predicted_variance = None
|
27 |
+
|
28 |
+
# 1. compute alphas, betas
|
29 |
+
alpha_prod_t = scheduler.alphas_cumprod[t]
|
30 |
+
alpha_prod_t_prev = (
|
31 |
+
scheduler.alphas_cumprod[prev_t] if prev_t >= 0 else scheduler.one
|
32 |
+
)
|
33 |
+
beta_prod_t = 1 - alpha_prod_t
|
34 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
35 |
+
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
|
36 |
+
current_beta_t = 1 - current_alpha_t
|
37 |
+
|
38 |
+
# 2. compute predicted original sample from predicted noise also called
|
39 |
+
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
|
40 |
+
if scheduler.config.prediction_type == "epsilon":
|
41 |
+
pred_original_sample = (
|
42 |
+
sample - beta_prod_t ** (0.5) * model_output
|
43 |
+
) / alpha_prod_t ** (0.5)
|
44 |
+
elif scheduler.config.prediction_type == "sample":
|
45 |
+
pred_original_sample = model_output
|
46 |
+
elif scheduler.config.prediction_type == "v_prediction":
|
47 |
+
pred_original_sample = (alpha_prod_t**0.5) * sample - (
|
48 |
+
beta_prod_t**0.5
|
49 |
+
) * model_output
|
50 |
+
else:
|
51 |
+
raise ValueError(
|
52 |
+
f"prediction_type given as {scheduler.config.prediction_type} must be one of `epsilon`, `sample` or"
|
53 |
+
" `v_prediction` for the DDPMScheduler."
|
54 |
+
)
|
55 |
+
|
56 |
+
# 3. Clip or threshold "predicted x_0"
|
57 |
+
if scheduler.config.thresholding:
|
58 |
+
pred_original_sample = scheduler._threshold_sample(pred_original_sample)
|
59 |
+
elif scheduler.config.clip_sample:
|
60 |
+
pred_original_sample = pred_original_sample.clamp(
|
61 |
+
-scheduler.config.clip_sample_range, scheduler.config.clip_sample_range
|
62 |
+
)
|
63 |
+
|
64 |
+
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
|
65 |
+
coef_D = current_sample_coeff * (beta_prod_t ** (0.5)) ## it is equal to coef_D
|
66 |
+
pred_prev_sample = (alpha_prod_t_prev ** (0.5) * pred_original_sample) + (
|
67 |
+
coef_D * model_output
|
68 |
+
)
|
69 |
+
|
70 |
+
return pred_prev_sample, coef_D
|
utils/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .args import get_args
|
2 |
+
from .pipeline_utils import load_pipeline, set_pipeline, encode_image, create_xts
|
3 |
+
from .utils import extract_mask, find_smallest_key_with_suffix, normalize
|
utils/args.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
def add_general_arguments(parser: argparse.ArgumentParser) -> None:
|
4 |
+
parser.add_argument("--cache_dir", type=str, default=None)
|
5 |
+
parser.add_argument("--prompts_file", type=str, default="")
|
6 |
+
parser.set_defaults(fp16=False)
|
7 |
+
parser.add_argument("--fp16", action="store_true")
|
8 |
+
# parser.add_argument("--seeds", type=int, nargs='+', default=[7], help="List of seed values (e.g., --seed 22 42)")
|
9 |
+
parser.add_argument("--seed", type=int, default=7, help="Seed value for random number generation.")
|
10 |
+
parser.add_argument("--output_dir", type=str, default="output")
|
11 |
+
parser.add_argument("--eval_dataset_folder", type=str, default="dataset")
|
12 |
+
parser.add_argument("--num_of_timesteps", type=int, default=5) # 3 or 4
|
13 |
+
|
14 |
+
def add_extra_arguments(parser: argparse.ArgumentParser) -> None:
|
15 |
+
parser.add_argument("--guidance_scale", type=float, default=0.0, help="Guidance scale value.")
|
16 |
+
parser.add_argument("--apply_dift_correction", action="store_true", help="Apply DIFT correction.")
|
17 |
+
parser.set_defaults(apply_dift_correction=False)
|
18 |
+
parser.add_argument("--w1", type=float, default=1.9, help="Weight for CTRL-X mode.")
|
19 |
+
parser.add_argument("--support_new_object", action="store_true", help="Enable support for new object detection.")
|
20 |
+
parser.add_argument("--mode", type=str, default="slerp_dift", help="Attention Type (e.g., normal, slerp, lerp, ...).")
|
21 |
+
parser.add_argument("--dift_timestep", type=int, default=400, help="DIFT timestep.")
|
22 |
+
parser.add_argument("--movement_intensifier", type=float, default=0.2, help="Movement intensifier factor.")
|
23 |
+
parser.add_argument("--structural_alignment", action="store_true", help="Enable structural alignment.")
|
24 |
+
|
25 |
+
def add_editing_arguments(parser: argparse.ArgumentParser) -> None:
|
26 |
+
parser.add_argument("--max_norm_zs", type=float, nargs="+", default=[-1, -1, -1, 15.5],
|
27 |
+
help="A list of floats for max_norm_zs.")
|
28 |
+
parser.add_argument("--noise_shift_delta", type=float, default=1)
|
29 |
+
parser.add_argument("--noise_timesteps", type=int, nargs="+", default=[799, 499, 199, 0],
|
30 |
+
help="A list of ints for noise_timesteps.")
|
31 |
+
parser.add_argument("--timesteps", type=int, nargs="+", default=[999, 799, 499, 199],
|
32 |
+
help="A list of ints for timesteps.")
|
33 |
+
parser.add_argument("--num_steps_inversion", type=int, default=5)
|
34 |
+
parser.add_argument("--step_start", type=int, default=1)
|
35 |
+
|
36 |
+
def check_args(args):
|
37 |
+
if args.num_of_timesteps not in [3, 4, 5, 10]:
|
38 |
+
raise ValueError("num_timesteps must be 3, 4, or 5 or 10")
|
39 |
+
|
40 |
+
if args.timesteps is not None:
|
41 |
+
num_steps_actual = len(args.timesteps)
|
42 |
+
else:
|
43 |
+
num_steps_actual = args.num_steps_inversion - args.step_start
|
44 |
+
|
45 |
+
if isinstance(args.max_norm_zs, (int, float)):
|
46 |
+
args.max_norm_zs = [args.max_norm_zs] * num_steps_actual
|
47 |
+
|
48 |
+
assert (
|
49 |
+
len(args.max_norm_zs) == num_steps_actual
|
50 |
+
), f"len(args.max_norm_zs) ({len(args.max_norm_zs)}) != num_steps_actual ({num_steps_actual})"
|
51 |
+
|
52 |
+
assert args.noise_timesteps is None or len(args.noise_timesteps) == (
|
53 |
+
num_steps_actual
|
54 |
+
), f"len(args.noise_timesteps) ({len(args.noise_timesteps)}) != num_steps_actual ({num_steps_actual})"
|
55 |
+
|
56 |
+
|
57 |
+
def get_args():
|
58 |
+
parser = argparse.ArgumentParser()
|
59 |
+
add_general_arguments(parser)
|
60 |
+
add_editing_arguments(parser)
|
61 |
+
add_extra_arguments(parser)
|
62 |
+
args = parser.parse_args()
|
63 |
+
check_args(args)
|
64 |
+
return args
|
65 |
+
|
utils/dino_utils.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import transforms
|
3 |
+
|
4 |
+
class DINOv2Processor:
|
5 |
+
def __init__(self, model_name="dinov2_vitb14", device="cpu", image_size=518):
|
6 |
+
self.model_name = model_name
|
7 |
+
self.device = device
|
8 |
+
self.image_size = image_size
|
9 |
+
self.model = self._load_model()
|
10 |
+
|
11 |
+
def _load_model(self):
|
12 |
+
model = torch.hub.load('facebookresearch/dinov2', self.model_name)
|
13 |
+
model.eval()
|
14 |
+
model.to(self.device)
|
15 |
+
return model
|
16 |
+
|
17 |
+
def _preprocess_image(self, image):
|
18 |
+
preprocess = transforms.Compose([
|
19 |
+
transforms.Resize(self.image_size, interpolation=transforms.InterpolationMode.BICUBIC),
|
20 |
+
transforms.CenterCrop(self.image_size),
|
21 |
+
transforms.ToTensor(),
|
22 |
+
transforms.Normalize(
|
23 |
+
mean=[0.485, 0.456, 0.406],
|
24 |
+
std=[0.229, 0.224, 0.225]
|
25 |
+
),
|
26 |
+
])
|
27 |
+
return preprocess(image)
|
28 |
+
|
29 |
+
def compute_similarity(self, pil_image1, pil_image2):
|
30 |
+
img1_t = self._preprocess_image(pil_image1).unsqueeze(0).to(self.device)
|
31 |
+
img2_t = self._preprocess_image(pil_image2).unsqueeze(0).to(self.device)
|
32 |
+
with torch.no_grad():
|
33 |
+
feat1 = self.model(img1_t)
|
34 |
+
feat2 = self.model(img2_t)
|
35 |
+
feat1 = feat1 / feat1.norm(dim=1, keepdim=True)
|
36 |
+
feat2 = feat2 / feat2.norm(dim=1, keepdim=True)
|
37 |
+
similarity = (feat1 * feat2).sum(dim=1)
|
38 |
+
return similarity.item()
|
utils/general_utils.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import io
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
from rembg import remove
|
8 |
+
|
9 |
+
|
10 |
+
def normalize(
|
11 |
+
z_t,
|
12 |
+
i,
|
13 |
+
max_norm_zs,
|
14 |
+
):
|
15 |
+
max_norm = max_norm_zs[i]
|
16 |
+
if max_norm < 0:
|
17 |
+
return z_t, 1
|
18 |
+
|
19 |
+
norm = torch.norm(z_t)
|
20 |
+
if norm < max_norm:
|
21 |
+
return z_t, 1
|
22 |
+
|
23 |
+
coeff = max_norm / norm
|
24 |
+
z_t = z_t * coeff
|
25 |
+
return z_t, coeff
|
26 |
+
|
27 |
+
def normalize2(x, dim):
|
28 |
+
x_mean = x.mean(dim=dim, keepdim=True)
|
29 |
+
x_std = x.std(dim=dim, keepdim=True)
|
30 |
+
x_normalized = (x - x_mean) / x_std
|
31 |
+
return x_normalized
|
32 |
+
|
33 |
+
def find_lambda_via_newton_batched(Qp, K_source, K_target, max_iter=50, tol=1e-7):
|
34 |
+
dot_QpK_source = torch.einsum("bcd,bmd->bcm", Qp, K_source) # shape [B]
|
35 |
+
dot_QpK_target = torch.einsum("bcd,bmd->bcm", Qp, K_target) # shape [B]
|
36 |
+
X = torch.exp(dot_QpK_source)
|
37 |
+
|
38 |
+
lmbd = torch.zeros([1], device=Qp.device, dtype=Qp.dtype) + 0.7
|
39 |
+
for it in range(max_iter):
|
40 |
+
y = torch.exp(lmbd * dot_QpK_target)
|
41 |
+
Z = (X + y).sum(dim=(2), keepdim=True)
|
42 |
+
x = X / Z
|
43 |
+
y = y / Z
|
44 |
+
val = (x.sum(dim=(1,2)) - y.sum(dim=(1,2))).sum()
|
45 |
+
|
46 |
+
grad = - (dot_QpK_target * y).sum()
|
47 |
+
|
48 |
+
if not (val.abs() > tol and grad.abs() > 1e-12):
|
49 |
+
break
|
50 |
+
|
51 |
+
lmbd = lmbd - val / grad
|
52 |
+
if lmbd.item() < 0.4:
|
53 |
+
return 0.1
|
54 |
+
elif lmbd.item() > 0.9:
|
55 |
+
return 0.65
|
56 |
+
|
57 |
+
return lmbd.item()
|
58 |
+
|
59 |
+
def find_lambda_via_super_halley(Qp, K_source, K_target, max_iter=50, tol=1e-7):
|
60 |
+
dot_QpK_source = torch.einsum("bcd,bmd->bcm", Qp, K_source)
|
61 |
+
dot_QpK_target = torch.einsum("bcd,bmd->bcm", Qp, K_target)
|
62 |
+
X = torch.exp(dot_QpK_source)
|
63 |
+
|
64 |
+
lmbd = torch.zeros([], device=Qp.device, dtype=Qp.dtype) + 0.8
|
65 |
+
|
66 |
+
for it in range(max_iter):
|
67 |
+
y = torch.exp(lmbd * dot_QpK_target)
|
68 |
+
|
69 |
+
Z = (X + y).sum(dim=2, keepdim=True)
|
70 |
+
x = X / Z
|
71 |
+
y = y / Z
|
72 |
+
|
73 |
+
val = (x.sum(dim=(1,2)) - y.sum(dim=(1,2))).sum()
|
74 |
+
|
75 |
+
grad = - (dot_QpK_target * y).sum()
|
76 |
+
|
77 |
+
f2 = - (dot_QpK_target**2 * y).sum()
|
78 |
+
|
79 |
+
if not (val.abs() > tol and grad.abs() > 1e-12):
|
80 |
+
break
|
81 |
+
|
82 |
+
denom = grad**2 - val * f2
|
83 |
+
if denom.abs() < 1e-20:
|
84 |
+
break
|
85 |
+
|
86 |
+
update = (val * grad) / denom
|
87 |
+
lmbd = lmbd - update
|
88 |
+
|
89 |
+
print(f"iter={it}, λ={lmbd.item():.6f}, val={val.item():.6e}, grad={grad.item():.6e}")
|
90 |
+
|
91 |
+
return lmbd
|
92 |
+
|
93 |
+
def find_smallest_key_with_suffix(features_dict: dict, suffix: str = "_1") -> str:
|
94 |
+
smallest_key = None
|
95 |
+
smallest_number = float('inf')
|
96 |
+
for key in features_dict.keys():
|
97 |
+
if key.endswith(suffix):
|
98 |
+
try:
|
99 |
+
number = int(key.split('_')[0])
|
100 |
+
if number < smallest_number:
|
101 |
+
smallest_number = number
|
102 |
+
smallest_key = key
|
103 |
+
except ValueError:
|
104 |
+
continue
|
105 |
+
return smallest_key
|
106 |
+
|
107 |
+
def extract_mask(masks, original_width, original_height):
|
108 |
+
if not masks:
|
109 |
+
return None
|
110 |
+
|
111 |
+
combined_mask = torch.zeros(512, 512)
|
112 |
+
scale_x = 512 / original_width
|
113 |
+
scale_y = 512 / original_height
|
114 |
+
|
115 |
+
for mask in masks:
|
116 |
+
start_x, start_y = mask["start_point"]
|
117 |
+
end_x, end_y = mask["end_point"]
|
118 |
+
|
119 |
+
start_x, end_x = min(start_x, end_x), max(start_x, end_x)
|
120 |
+
start_y, end_y = min(start_y, end_y), max(start_y, end_y)
|
121 |
+
|
122 |
+
scaled_start_x, scaled_start_y = int(start_x * scale_x), int(start_y * scale_y)
|
123 |
+
scaled_end_x, scaled_end_y = int(end_x * scale_x), int(end_y * scale_y)
|
124 |
+
combined_mask[scaled_start_y:scaled_end_y, scaled_start_x:scaled_end_x] += 1
|
125 |
+
|
126 |
+
binary_mask = (combined_mask > 0).float()
|
127 |
+
resized_mask = F.interpolate(binary_mask[None, None, :, :], size=(64, 64), mode="nearest")[0, 0]
|
128 |
+
|
129 |
+
return resized_mask
|
130 |
+
|
131 |
+
def remove_foreground(pil_image, threshold=128):
|
132 |
+
try:
|
133 |
+
with io.BytesIO() as input_buffer:
|
134 |
+
pil_image.save(input_buffer, format="PNG")
|
135 |
+
input_image_bytes = input_buffer.getvalue()
|
136 |
+
|
137 |
+
output_image_bytes = remove(input_image_bytes, alpha_matting=True)
|
138 |
+
|
139 |
+
output_image = Image.open(io.BytesIO(output_image_bytes))
|
140 |
+
|
141 |
+
mask = output_image.split()[-1]
|
142 |
+
|
143 |
+
mask_array = np.array(mask)
|
144 |
+
binary_mask = (mask_array >= threshold).astype(np.float32)
|
145 |
+
|
146 |
+
kernel = np.ones((15, 15), np.uint8)
|
147 |
+
binary_mask = cv2.erode(binary_mask, kernel, iterations=1)
|
148 |
+
|
149 |
+
mask_tensor = torch.from_numpy(binary_mask)
|
150 |
+
resized_mask = F.interpolate(mask_tensor[None, None, :, :], size=(64, 64), mode="nearest")[0, 0]
|
151 |
+
|
152 |
+
return resized_mask
|
153 |
+
except Exception as e:
|
154 |
+
print(f"Error while removing foreground: {e}")
|
155 |
+
return None
|
utils/pipeline_utils.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img import (
|
3 |
+
retrieve_timesteps,
|
4 |
+
retrieve_latents,
|
5 |
+
)
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from functools import partial
|
9 |
+
from diffusers import DDPMScheduler
|
10 |
+
from model.pipeline_sdxl import StableDiffusionXLImg2ImgPipeline
|
11 |
+
|
12 |
+
SAMPLING_DEVICE = "cpu" # "cuda"
|
13 |
+
VAE_SAMPLE = "argmax" # "argmax" or "sample"
|
14 |
+
RESIZE_TYPE = None # Image.LANCZOS
|
15 |
+
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
|
18 |
+
def encode_image(image, pipe, generator):
|
19 |
+
pipe_dtype = pipe.dtype
|
20 |
+
image = pipe.image_processor.preprocess(image)
|
21 |
+
image = image.to(device=device, dtype=pipe.dtype)
|
22 |
+
|
23 |
+
if pipe.vae.config.force_upcast:
|
24 |
+
image = image.float()
|
25 |
+
pipe.vae.to(dtype=torch.float32)
|
26 |
+
|
27 |
+
init_latents = retrieve_latents(
|
28 |
+
pipe.vae.encode(image), generator=generator, sample_mode=VAE_SAMPLE
|
29 |
+
)
|
30 |
+
|
31 |
+
if pipe.vae.config.force_upcast:
|
32 |
+
pipe.vae.to(pipe_dtype)
|
33 |
+
|
34 |
+
init_latents = init_latents.to(pipe_dtype)
|
35 |
+
init_latents = pipe.vae.config.scaling_factor * init_latents
|
36 |
+
|
37 |
+
return init_latents
|
38 |
+
|
39 |
+
def create_xts(
|
40 |
+
noise_shift_delta,
|
41 |
+
noise_timesteps,
|
42 |
+
generator,
|
43 |
+
scheduler,
|
44 |
+
timesteps,
|
45 |
+
x_0,
|
46 |
+
):
|
47 |
+
if noise_timesteps is None:
|
48 |
+
noising_delta = noise_shift_delta * (timesteps[0] - timesteps[1])
|
49 |
+
noise_timesteps = [timestep - int(noising_delta) for timestep in timesteps]
|
50 |
+
# noise_timesteps = [timestep for timestep in timesteps]
|
51 |
+
|
52 |
+
# print(noise_timesteps, timesteps)
|
53 |
+
first_x_0_idx = len(noise_timesteps)
|
54 |
+
for i in range(len(noise_timesteps)):
|
55 |
+
if noise_timesteps[i] <= 0:
|
56 |
+
first_x_0_idx = i
|
57 |
+
break
|
58 |
+
|
59 |
+
noise_timesteps = noise_timesteps[:first_x_0_idx]
|
60 |
+
|
61 |
+
x_0_expanded = x_0.expand(len(noise_timesteps), -1, -1, -1)
|
62 |
+
noise = torch.randn(
|
63 |
+
x_0_expanded.size(), generator=generator, device=SAMPLING_DEVICE
|
64 |
+
).to(x_0.device)
|
65 |
+
|
66 |
+
x_ts = scheduler.add_noise(
|
67 |
+
x_0_expanded,
|
68 |
+
noise,
|
69 |
+
torch.IntTensor(noise_timesteps),
|
70 |
+
)
|
71 |
+
x_ts = [t.unsqueeze(dim=0) for t in list(x_ts)]
|
72 |
+
x_ts += [x_0] * (len(timesteps) - first_x_0_idx)
|
73 |
+
x_ts += [x_0]
|
74 |
+
return x_ts
|
75 |
+
|
76 |
+
def load_pipeline(fp16, cache_dir):
|
77 |
+
kwargs = (
|
78 |
+
{
|
79 |
+
"torch_dtype": torch.float16,
|
80 |
+
"variant": "fp16",
|
81 |
+
}
|
82 |
+
if fp16
|
83 |
+
else {}
|
84 |
+
)
|
85 |
+
from model.unet_sdxl import OursUNet2DConditionModel
|
86 |
+
unet = OursUNet2DConditionModel.from_pretrained(
|
87 |
+
"stabilityai/sdxl-turbo",
|
88 |
+
subfolder="unet",
|
89 |
+
cache_dir=cache_dir,
|
90 |
+
safety_checker=None,
|
91 |
+
**kwargs,
|
92 |
+
)
|
93 |
+
|
94 |
+
pipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
95 |
+
"stabilityai/sdxl-turbo",
|
96 |
+
unet=unet,
|
97 |
+
cache_dir=cache_dir,
|
98 |
+
safety_checker=None,
|
99 |
+
**kwargs,
|
100 |
+
)
|
101 |
+
|
102 |
+
pipeline = pipeline.to(device)
|
103 |
+
pipeline.scheduler = DDPMScheduler.from_pretrained( # type: ignore
|
104 |
+
"stabilityai/sdxl-turbo",
|
105 |
+
subfolder="scheduler",
|
106 |
+
)
|
107 |
+
|
108 |
+
return pipeline
|
109 |
+
|
110 |
+
def set_pipeline(pipeline: StableDiffusionXLImg2ImgPipeline, num_timesteps, generator, config):
|
111 |
+
if config.timesteps is None:
|
112 |
+
denoising_start = config.step_start / config.num_steps_inversion
|
113 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
114 |
+
pipeline.scheduler, config.num_steps_inversion, device, None
|
115 |
+
)
|
116 |
+
timesteps, num_inference_steps = pipeline.get_timesteps(
|
117 |
+
num_inference_steps=num_inference_steps,
|
118 |
+
device=device,
|
119 |
+
denoising_start=denoising_start,
|
120 |
+
strength=0,
|
121 |
+
)
|
122 |
+
timesteps = timesteps.type(torch.int64)
|
123 |
+
pipeline.__call__ = partial(
|
124 |
+
pipeline.__call__,
|
125 |
+
num_inference_steps=config.num_steps_inversion,
|
126 |
+
guidance_scale=config.guidance_scale,
|
127 |
+
generator=generator,
|
128 |
+
denoising_start=denoising_start,
|
129 |
+
strength=0,
|
130 |
+
)
|
131 |
+
pipeline.scheduler.set_timesteps(
|
132 |
+
timesteps=timesteps.cpu(),
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
timesteps = torch.tensor(config.timesteps, dtype=torch.int64)
|
136 |
+
pipeline.__call__ = partial(
|
137 |
+
pipeline.__call__,
|
138 |
+
timesteps=timesteps,
|
139 |
+
guidance_scale=config.guidance_scale,
|
140 |
+
denoising_start=0,
|
141 |
+
strength=1,
|
142 |
+
)
|
143 |
+
pipeline.scheduler.set_timesteps(
|
144 |
+
timesteps=config.timesteps, # device=pipeline.device
|
145 |
+
)
|
146 |
+
timesteps = [torch.tensor(t) for t in timesteps.tolist()]
|
147 |
+
return timesteps, config
|
148 |
+
|
utils/utils.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import io
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
|
9 |
+
def normalize(
|
10 |
+
z_t,
|
11 |
+
i,
|
12 |
+
max_norm_zs,
|
13 |
+
):
|
14 |
+
max_norm = max_norm_zs[i]
|
15 |
+
if max_norm < 0:
|
16 |
+
return z_t, 1
|
17 |
+
|
18 |
+
norm = torch.norm(z_t)
|
19 |
+
if norm < max_norm:
|
20 |
+
return z_t, 1
|
21 |
+
|
22 |
+
coeff = max_norm / norm
|
23 |
+
z_t = z_t * coeff
|
24 |
+
return z_t, coeff
|
25 |
+
|
26 |
+
def normalize2(x, dim):
|
27 |
+
x_mean = x.mean(dim=dim, keepdim=True)
|
28 |
+
x_std = x.std(dim=dim, keepdim=True)
|
29 |
+
x_normalized = (x - x_mean) / x_std
|
30 |
+
return x_normalized
|
31 |
+
|
32 |
+
def find_lambda_via_newton_batched(Qp, K_source, K_target, max_iter=50, tol=1e-7):
|
33 |
+
dot_QpK_source = torch.einsum("bcd,bmd->bcm", Qp, K_source) # shape [B]
|
34 |
+
dot_QpK_target = torch.einsum("bcd,bmd->bcm", Qp, K_target) # shape [B]
|
35 |
+
X = torch.exp(dot_QpK_source)
|
36 |
+
|
37 |
+
lmbd = torch.zeros([1], device=Qp.device, dtype=Qp.dtype) + 0.7
|
38 |
+
for it in range(max_iter):
|
39 |
+
y = torch.exp(lmbd * dot_QpK_target)
|
40 |
+
Z = (X + y).sum(dim=(2), keepdim=True)
|
41 |
+
x = X / Z
|
42 |
+
y = y / Z
|
43 |
+
val = (x.sum(dim=(1,2)) - y.sum(dim=(1,2))).sum()
|
44 |
+
|
45 |
+
grad = - (dot_QpK_target * y).sum()
|
46 |
+
|
47 |
+
if not (val.abs() > tol and grad.abs() > 1e-12):
|
48 |
+
break
|
49 |
+
|
50 |
+
lmbd = lmbd - val / grad
|
51 |
+
if lmbd.item() < 0.4:
|
52 |
+
return 0.1
|
53 |
+
elif lmbd.item() > 0.9:
|
54 |
+
return 0.65
|
55 |
+
|
56 |
+
return lmbd.item()
|
57 |
+
|
58 |
+
def find_lambda_via_super_halley(Qp, K_source, K_target, max_iter=50, tol=1e-7):
|
59 |
+
dot_QpK_source = torch.einsum("bcd,bmd->bcm", Qp, K_source)
|
60 |
+
dot_QpK_target = torch.einsum("bcd,bmd->bcm", Qp, K_target)
|
61 |
+
X = torch.exp(dot_QpK_source)
|
62 |
+
|
63 |
+
lmbd = torch.zeros([], device=Qp.device, dtype=Qp.dtype) + 0.8
|
64 |
+
|
65 |
+
for it in range(max_iter):
|
66 |
+
y = torch.exp(lmbd * dot_QpK_target)
|
67 |
+
|
68 |
+
Z = (X + y).sum(dim=2, keepdim=True)
|
69 |
+
x = X / Z
|
70 |
+
y = y / Z
|
71 |
+
|
72 |
+
val = (x.sum(dim=(1,2)) - y.sum(dim=(1,2))).sum()
|
73 |
+
|
74 |
+
grad = - (dot_QpK_target * y).sum()
|
75 |
+
|
76 |
+
f2 = - (dot_QpK_target**2 * y).sum()
|
77 |
+
|
78 |
+
if not (val.abs() > tol and grad.abs() > 1e-12):
|
79 |
+
break
|
80 |
+
|
81 |
+
denom = grad**2 - val * f2
|
82 |
+
if denom.abs() < 1e-20:
|
83 |
+
break
|
84 |
+
|
85 |
+
update = (val * grad) / denom
|
86 |
+
lmbd = lmbd - update
|
87 |
+
|
88 |
+
print(f"iter={it}, λ={lmbd.item():.6f}, val={val.item():.6e}, grad={grad.item():.6e}")
|
89 |
+
|
90 |
+
return lmbd
|
91 |
+
|
92 |
+
def find_smallest_key_with_suffix(features_dict: dict, suffix: str = "_1") -> str:
|
93 |
+
smallest_key = None
|
94 |
+
smallest_number = float('inf')
|
95 |
+
for key in features_dict.keys():
|
96 |
+
if key.endswith(suffix):
|
97 |
+
try:
|
98 |
+
number = int(key.split('_')[0])
|
99 |
+
if number < smallest_number:
|
100 |
+
smallest_number = number
|
101 |
+
smallest_key = key
|
102 |
+
except ValueError:
|
103 |
+
continue
|
104 |
+
return smallest_key
|
105 |
+
|
106 |
+
def extract_mask(masks, original_width, original_height):
|
107 |
+
if not masks:
|
108 |
+
return None
|
109 |
+
|
110 |
+
combined_mask = torch.zeros(512, 512)
|
111 |
+
scale_x = 512 / original_width
|
112 |
+
scale_y = 512 / original_height
|
113 |
+
|
114 |
+
for mask in masks:
|
115 |
+
start_x, start_y = mask["start_point"]
|
116 |
+
end_x, end_y = mask["end_point"]
|
117 |
+
|
118 |
+
start_x, end_x = min(start_x, end_x), max(start_x, end_x)
|
119 |
+
start_y, end_y = min(start_y, end_y), max(start_y, end_y)
|
120 |
+
|
121 |
+
scaled_start_x, scaled_start_y = int(start_x * scale_x), int(start_y * scale_y)
|
122 |
+
scaled_end_x, scaled_end_y = int(end_x * scale_x), int(end_y * scale_y)
|
123 |
+
combined_mask[scaled_start_y:scaled_end_y, scaled_start_x:scaled_end_x] += 1
|
124 |
+
|
125 |
+
binary_mask = (combined_mask > 0).float()
|
126 |
+
resized_mask = F.interpolate(binary_mask[None, None, :, :], size=(64, 64), mode="nearest")[0, 0]
|
127 |
+
|
128 |
+
return resized_mask
|
129 |
+
|
visualization/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .image_utils import save_results
|
visualization/draw_box.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
|
3 |
+
bbox_start = (-1, -1)
|
4 |
+
bbox_end = (-1, -1)
|
5 |
+
drawing = False
|
6 |
+
|
7 |
+
image_path = 'images/fatty-corgi.jpg'
|
8 |
+
|
9 |
+
image = cv2.resize(cv2.imread(image_path), (512, 512))
|
10 |
+
image_copy = image.copy()
|
11 |
+
|
12 |
+
def draw_bbox(event, x, y, flags, param):
|
13 |
+
global bbox_start, bbox_end, drawing, image
|
14 |
+
|
15 |
+
if event == cv2.EVENT_LBUTTONDOWN:
|
16 |
+
drawing = True
|
17 |
+
bbox_start = (x, y)
|
18 |
+
bbox_end = bbox_start
|
19 |
+
|
20 |
+
elif event == cv2.EVENT_MOUSEMOVE:
|
21 |
+
if drawing:
|
22 |
+
image = image_copy.copy()
|
23 |
+
cv2.rectangle(image, bbox_start, (x, y), (0, 0, 255), 2)
|
24 |
+
|
25 |
+
elif event == cv2.EVENT_LBUTTONUP:
|
26 |
+
drawing = False
|
27 |
+
bbox_end = (x, y)
|
28 |
+
cv2.rectangle(image, bbox_start, bbox_end, (0, 0, 255), 2)
|
29 |
+
# print(f"BBox Coordinates: Start: {bbox_start}, End: {bbox_end}\n")
|
30 |
+
print(f"bbx_start_point= ({bbox_start[0]}, {bbox_start[1]}), ")
|
31 |
+
print(f"bbx_end_point= ({bbox_end[0]}, {bbox_end[1]})")
|
32 |
+
|
33 |
+
x1, y1 = bbox_start
|
34 |
+
x2, y2 = bbox_end
|
35 |
+
|
36 |
+
cv2.namedWindow("Image")
|
37 |
+
cv2.setMouseCallback("Image", draw_bbox)
|
38 |
+
|
39 |
+
while True:
|
40 |
+
cv2.imshow("Image", image)
|
41 |
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
42 |
+
break
|
43 |
+
|
44 |
+
cv2.destroyAllWindows()
|
visualization/image_utils.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
import jsonc as json
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
|
10 |
+
def img_list_to_pil(img_list, cond_image = None, seperation = 10):
|
11 |
+
if cond_image is not None:
|
12 |
+
img_list.append(cond_image)
|
13 |
+
|
14 |
+
widths, heights = zip(*(i.size for i in img_list))
|
15 |
+
total_width = sum(widths) + seperation * len(img_list)
|
16 |
+
max_height = max(heights)
|
17 |
+
|
18 |
+
new_im = Image.new('RGB', (total_width, max_height))
|
19 |
+
|
20 |
+
x_offset = 0
|
21 |
+
for im in img_list:
|
22 |
+
new_im.paste(im, (x_offset, 0))
|
23 |
+
x_offset += im.size[0] + seperation
|
24 |
+
|
25 |
+
return new_im
|
26 |
+
|
27 |
+
|
28 |
+
def grid_image_visualize(images, row_size):
|
29 |
+
widths, heights = zip(*(i.size for i in images))
|
30 |
+
total_width = max(widths) * row_size + 10 * (row_size - 1)
|
31 |
+
max_height = max(heights) * ((len(images) + row_size - 1) // row_size)
|
32 |
+
new_im = Image.new('RGB', (total_width, max_height))
|
33 |
+
|
34 |
+
x_offset = 0
|
35 |
+
y_offset = 0
|
36 |
+
for i, im in enumerate(images):
|
37 |
+
new_im.paste(im, (x_offset, y_offset))
|
38 |
+
x_offset += im.size[0] + 10
|
39 |
+
if (i + 1) % row_size == 0:
|
40 |
+
x_offset = 0
|
41 |
+
y_offset += im.size[1]
|
42 |
+
|
43 |
+
return new_im
|
44 |
+
|
45 |
+
def process_images(images, res=512):
|
46 |
+
res_images = []
|
47 |
+
for image in images:
|
48 |
+
crop_size = min(image.size)
|
49 |
+
|
50 |
+
left = (image.size[0] - crop_size) // 2
|
51 |
+
top = (image.size[1] - crop_size) // 2
|
52 |
+
right = (image.size[0] + crop_size) // 2
|
53 |
+
bottom = (image.size[1] + crop_size) // 2
|
54 |
+
|
55 |
+
image = image.crop((left, top, right, bottom))
|
56 |
+
image = image.resize((res, res), Image.BILINEAR)
|
57 |
+
res_images.append(image)
|
58 |
+
return res_images
|
59 |
+
|
60 |
+
def sanitize_prompt(prompt: str, max_len: int = 50) -> str:
|
61 |
+
sanitized = re.sub(r'[^a-zA-Z0-9_\-]+', '_', prompt)
|
62 |
+
return sanitized[:max_len].strip("_")
|
63 |
+
|
64 |
+
def get_next_index(folder_path: str) -> int:
|
65 |
+
if not os.path.exists(folder_path):
|
66 |
+
return 0
|
67 |
+
|
68 |
+
pattern = re.compile(r'.*_(\d+)\.(?:png|json)$')
|
69 |
+
max_index = -1
|
70 |
+
|
71 |
+
for filename in os.listdir(folder_path):
|
72 |
+
match = pattern.match(filename)
|
73 |
+
if match:
|
74 |
+
idx = int(match.group(1))
|
75 |
+
if idx > max_index:
|
76 |
+
max_index = idx
|
77 |
+
|
78 |
+
return max_index + 1
|
79 |
+
|
80 |
+
def save_results(
|
81 |
+
args,
|
82 |
+
source_prompt: str,
|
83 |
+
target_prompt: str,
|
84 |
+
images: Image.Image,
|
85 |
+
):
|
86 |
+
src_name = sanitize_prompt(source_prompt)
|
87 |
+
tgt_name = sanitize_prompt(target_prompt)
|
88 |
+
folder_name = f"{src_name}#{tgt_name}"
|
89 |
+
|
90 |
+
output_dir = os.path.join(args.output_dir, folder_name)
|
91 |
+
os.makedirs(output_dir, exist_ok=True)
|
92 |
+
|
93 |
+
next_idx = get_next_index(output_dir)
|
94 |
+
|
95 |
+
concated_image = img_list_to_pil([images[0], images[-1]], cond_image=None, seperation=10)
|
96 |
+
concated_image.save(os.path.join(output_dir, f"concat_{next_idx}.png"))
|
97 |
+
images[0].save(os.path.join(output_dir, f"input_{next_idx}.png"))
|
98 |
+
images[-1].save(os.path.join(output_dir, f"output_{next_idx}.png"))
|
99 |
+
|
100 |
+
args_filename = f"args_{next_idx}.json"
|
101 |
+
args_path = os.path.join(output_dir, args_filename)
|
102 |
+
|
103 |
+
with open(args_path, "w") as f:
|
104 |
+
json.dump(vars(args), f, indent=4)
|
105 |
+
|
106 |
+
print(f"Saved image to {output_dir} and args to {args_path}")
|