aroluo's picture
Upload folder using huggingface_hub
64d4f68 verified
# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import json
import math
import os
import re
from typing import Dict, List, Tuple, Optional, Union
import numpy as np
import torch
from torch.utils.dlpack import from_dlpack, to_dlpack
import triton_python_backend_utils as pb_utils
from transformers import AutoTokenizer
from sparktts.utils.token_parser import TASK_TOKEN_MAP
def process_prompt(
text: str,
prompt_text: Optional[str] = None,
global_token_ids: torch.Tensor = None,
semantic_token_ids: torch.Tensor = None,
) -> Tuple[str, torch.Tensor]:
"""
Process input for voice cloning.
Args:
text: The text input to be converted to speech.
prompt_text: Transcript of the prompt audio.
global_token_ids: Global token IDs extracted from reference audio.
semantic_token_ids: Semantic token IDs extracted from reference audio.
Returns:
Tuple containing the formatted input prompt and global token IDs.
"""
# Convert global tokens to string format
global_tokens = "".join(
[f"<|bicodec_global_{i}|>" for i in global_token_ids.squeeze()]
)
# Prepare the input tokens for the model
if prompt_text is not None:
# Include semantic tokens when prompt text is provided
semantic_tokens = "".join(
[f"<|bicodec_semantic_{i}|>" for i in semantic_token_ids.squeeze()]
)
inputs = [
TASK_TOKEN_MAP["tts"],
"<|start_content|>",
prompt_text,
text,
"<|end_content|>",
"<|start_global_token|>",
global_tokens,
"<|end_global_token|>",
"<|start_semantic_token|>",
semantic_tokens,
]
else:
# Without prompt text, exclude semantic tokens
inputs = [
TASK_TOKEN_MAP["tts"],
"<|start_content|>",
text,
"<|end_content|>",
"<|start_global_token|>",
global_tokens,
"<|end_global_token|>",
]
# Join all input components into a single string
inputs = "".join(inputs)
return inputs, global_token_ids
class TritonPythonModel:
"""Triton Python model for Spark TTS.
This model orchestrates the end-to-end TTS pipeline by coordinating
between audio tokenizer, LLM, and vocoder components.
"""
def initialize(self, args):
"""Initialize the model.
Args:
args: Dictionary containing model configuration
"""
self.logger = pb_utils.Logger
# Parse model parameters
self.model_config = json.loads(args['model_config'])
parameters = self.model_config['parameters']
model_params = {k: v["string_value"] for k, v in parameters.items()}
self.logger.log_info(f"model_params:{model_params}")
# streaming TTS parameters
assert (
float(model_params["audio_chunk_duration"]) >= 0.5
), f"audio_chunk_duration at least 0.5 seconds"
self.audio_chunk_duration = float(model_params["audio_chunk_duration"])
self.max_audio_chunk_duration = float(model_params["max_audio_chunk_duration"])
assert (
float(model_params["audio_chunk_size_scale_factor"]) >= 1.0
), "audio_chunk_size_scale_factor should be greater than 1, change it according to your actual rtf"
self.audio_chunk_size_scale_factor = float(model_params["audio_chunk_size_scale_factor"]) # scale speed
self.audio_chunk_overlap_duration = float(model_params["audio_chunk_overlap_duration"])
self.audio_tokenizer_frame_rate = int(model_params["audio_tokenizer_frame_rate"])
# Initialize tokenizer
llm_tokenizer_dir = model_params["llm_tokenizer_dir"]
self.tokenizer = AutoTokenizer.from_pretrained(llm_tokenizer_dir)
self.device = torch.device("cuda")
self.decoupled = pb_utils.using_decoupled_model_transaction_policy(self.model_config)
def forward_llm(self, input_ids):
"""
Prepares the response from the language model based on the provided
inputs. Creates a `pb_utils.InferenceRequest` object with passed
`llm_request_inputs` to send to a decoupled TensorRTLLM model.
For each response from the language model:
- Checks for errors and raise an exception if any are found.
- Extracts the "output_ids" tensor from the response.
- Determines the finish reason based on the presence of the
end-of-sequence token or reaching the maximum length.
- Appends the generated token IDs to `output_ids`.
- If the finish reason is determined, decodes the output IDs to text
and prepares the final response.
The final response includes the generated text, finish reason,
completion tokens, prompt tokens, and total tokens.
Parameters
----------
- llm_request_inputs (dict): A dictionary containing the inputs for the language model.
Returns
-------
- pb_utils.InferenceResponse: The response object containing the generated text and additional metadata.
"""
# convert input_ids to numpy, with shape [1, sequence_length]
input_ids = input_ids.cpu().numpy()
max_tokens = 512
input_dict = {
"request_output_len": np.array([[max_tokens]], dtype=np.int32),
"end_id": np.array([[self.tokenizer.eos_token_id]], dtype=np.int32),
"pad_id": np.array([[self.tokenizer.pad_token_id]], dtype=np.int32),
"streaming": np.array([[self.decoupled]], dtype=np.bool_),
"runtime_top_p": np.array([[0.95]], dtype=np.float32),
"runtime_top_k": np.array([[50]], dtype=np.int32),
"temperature": np.array([[0.8]], dtype=np.float32),
"input_ids": input_ids,
"input_lengths": np.array([[input_ids.shape[1]]], dtype=np.int32),
}
# Convert inputs to Triton tensors
input_tensor_list = [
pb_utils.Tensor(k, v) for k, v in input_dict.items()
]
# Create and execute inference request
llm_request = pb_utils.InferenceRequest(
model_name="tensorrt_llm",
requested_output_names=["output_ids", "sequence_length"],
inputs=input_tensor_list,
)
llm_responses = llm_request.exec(decoupled=self.decoupled)
if self.decoupled:
for llm_response in llm_responses:
if llm_response.has_error():
raise pb_utils.TritonModelException(llm_response.error().message())
# Extract and process output
output_ids = pb_utils.get_output_tensor_by_name(
llm_response, "output_ids").as_numpy()
seq_lens = pb_utils.get_output_tensor_by_name(
llm_response, "sequence_length").as_numpy()
# Get actual output IDs up to the sequence length
actual_output_ids = output_ids[0][0][:seq_lens[0][0]]
yield actual_output_ids
else:
llm_response = llm_responses
if llm_response.has_error():
raise pb_utils.TritonModelException(llm_response.error().message())
# Extract and process output
output_ids = pb_utils.get_output_tensor_by_name(
llm_response, "output_ids").as_numpy()
seq_lens = pb_utils.get_output_tensor_by_name(
llm_response, "sequence_length").as_numpy()
# Get actual output IDs up to the sequence length
actual_output_ids = output_ids[0][0][:seq_lens[0][0]]
yield actual_output_ids
def forward_audio_tokenizer(self, wav, wav_len):
"""Forward pass through the audio tokenizer component.
Args:
wav: Input waveform tensor
wav_len: Waveform length tensor
Returns:
Tuple of global and semantic tokens
"""
inference_request = pb_utils.InferenceRequest(
model_name='audio_tokenizer',
requested_output_names=['global_tokens', 'semantic_tokens'],
inputs=[wav, wav_len]
)
inference_response = inference_request.exec()
if inference_response.has_error():
raise pb_utils.TritonModelException(inference_response.error().message())
# Extract and convert output tensors
global_tokens = pb_utils.get_output_tensor_by_name(inference_response, 'global_tokens')
global_tokens = torch.utils.dlpack.from_dlpack(global_tokens.to_dlpack()).cpu()
semantic_tokens = pb_utils.get_output_tensor_by_name(inference_response, 'semantic_tokens')
semantic_tokens = torch.utils.dlpack.from_dlpack(semantic_tokens.to_dlpack()).cpu()
return global_tokens, semantic_tokens
def forward_vocoder(self, global_token_ids: torch.Tensor, pred_semantic_ids: torch.Tensor) -> torch.Tensor:
"""Forward pass through the vocoder component.
Args:
global_token_ids: Global token IDs tensor
pred_semantic_ids: Predicted semantic token IDs tensor
Returns:
Generated waveform tensor
"""
# Convert tensors to Triton format
global_token_ids_tensor = pb_utils.Tensor.from_dlpack("global_tokens", to_dlpack(global_token_ids))
pred_semantic_ids_tensor = pb_utils.Tensor.from_dlpack("semantic_tokens", to_dlpack(pred_semantic_ids))
# Create and execute inference request
inference_request = pb_utils.InferenceRequest(
model_name='vocoder',
requested_output_names=['waveform'],
inputs=[global_token_ids_tensor, pred_semantic_ids_tensor]
)
inference_response = inference_request.exec()
if inference_response.has_error():
raise pb_utils.TritonModelException(inference_response.error().message())
# Extract and convert output waveform
waveform = pb_utils.get_output_tensor_by_name(inference_response, 'waveform')
waveform = torch.utils.dlpack.from_dlpack(waveform.to_dlpack()).cpu()
return waveform
def token2wav(self, generated_token_ids, global_token_ids):
# Decode and extract semantic token IDs from generated text
predicted_text = self.tokenizer.batch_decode(
[generated_token_ids],
skip_special_tokens=True,
)[0]
pred_semantic_ids = (
torch.tensor(
[int(token) for token in re.findall(r"bicodec_semantic_(\d+)", predicted_text)]
)
.unsqueeze(0)
.to(torch.int32)
)
# Generate audio with vocoder
audio = self.forward_vocoder(
global_token_ids.to(self.device),
pred_semantic_ids.to(self.device),
)
return audio
def execute(self, requests):
"""Execute inference on the batched requests.
Args:
requests: List of inference requests
Returns:
List of inference responses containing generated audio
"""
responses = []
for request in requests:
# Extract input tensors
wav = pb_utils.get_input_tensor_by_name(request, "reference_wav")
wav_len = pb_utils.get_input_tensor_by_name(request, "reference_wav_len")
# Process reference audio through audio tokenizer
global_tokens, semantic_tokens = self.forward_audio_tokenizer(wav, wav_len)
# Extract text inputs
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
reference_text = reference_text[0][0].decode('utf-8')
target_text = pb_utils.get_input_tensor_by_name(request, "target_text").as_numpy()
target_text = target_text[0][0].decode('utf-8')
# Prepare prompt for LLM
prompt, global_token_ids = process_prompt(
text=target_text,
prompt_text=reference_text,
global_token_ids=global_tokens,
semantic_token_ids=semantic_tokens,
)
# Tokenize prompt for LLM
model_inputs = self.tokenizer([prompt], return_tensors="pt").to(self.device)
input_ids = model_inputs.input_ids.to(torch.int32)
# Generate semantic tokens with LLM
generated_ids_iter = self.forward_llm(input_ids)
if self.decoupled:
response_sender = request.get_response_sender()
request_id = request.request_id()
semantic_token_ids_arr = []
max_chunk_size = math.ceil(self.max_audio_chunk_duration * self.audio_tokenizer_frame_rate)
chunk_size = math.ceil(self.audio_chunk_duration * self.audio_tokenizer_frame_rate)
overlap_chunk_size = math.ceil(self.audio_chunk_overlap_duration * self.audio_tokenizer_frame_rate)
self.logger.log_info(
f"[{request_id}] init chunk_size: {chunk_size} max_chunk_size: {max_chunk_size}"
)
for generated_ids in generated_ids_iter:
if generated_ids is None or len(generated_ids) == 0:
break
semantic_token_ids_arr.append(generated_ids)
if len(semantic_token_ids_arr) >= chunk_size:
chunk = semantic_token_ids_arr[:chunk_size]
generated_semantic_token_ids = np.hstack(chunk)
# Process each chunk
sub_tts_speech = self.token2wav(generated_semantic_token_ids, global_token_ids)
# Prepare response to send
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
response_sender.send(inference_response)
semantic_token_ids_arr = semantic_token_ids_arr[chunk_size - overlap_chunk_size:]
# increase chunk size for better speech quality
chunk_size = min(max_chunk_size, int(chunk_size * self.audio_chunk_size_scale_factor))
self.logger.log_info(f"[{request_id}] increase chunk_size: {chunk_size}")
if len(semantic_token_ids_arr) > 0: # end to finalize
generated_semantic_token_ids = np.hstack(semantic_token_ids_arr)
# Process each chunk
sub_tts_speech = self.token2wav(generated_semantic_token_ids, global_token_ids)
# Prepare response to send
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
response_sender.send(inference_response)
self.logger.log_info(f"[{request_id}] last chunk len: {len(semantic_token_ids_arr)}")
else:
generated_ids = next(generated_ids_iter)
if generated_ids is None or len(generated_ids) == 0:
raise pb_utils.TritonModelException("Generated IDs is None or empty")
audio = self.token2wav(generated_ids, global_token_ids)
# Prepare response
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio))
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
responses.append(inference_response)
if self.decoupled:
response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
self.logger.log_info(f"send tritonserver_response_complete_final to end")
if not self.decoupled:
return responses