## Nvidia Triton Inference Serving Best Practice for Spark TTS ### Quick Start Directly launch the service using docker compose. ```sh docker compose up ``` ### Build Image Build the docker image from scratch. ```sh docker build . -f Dockerfile.server -t soar97/triton-spark-tts:25.02 ``` ### Create Docker Container ```sh your_mount_dir=/mnt:/mnt docker run -it --name "spark-tts-server" --gpus all --net host -v $your_mount_dir --shm-size=2g soar97/triton-spark-tts:25.02 ``` ### Understanding `run.sh` The `run.sh` script automates various steps using stages. You can run specific stages using: ```sh bash run.sh [service_type] ``` - ``: The stage to begin execution from (0-5). - ``: The stage to end execution at (0-5). - `[service_type]`: Optional, specifies the service type ('streaming' or 'offline', defaults may apply based on script logic). Required for stages 4 and 5. Stages: - **Stage 0**: Download Spark-TTS-0.5B model from HuggingFace. - **Stage 1**: Convert HuggingFace checkpoint to TensorRT-LLM format and build TensorRT engines. - **Stage 2**: Create the Triton model repository structure and configure model files (adjusts for streaming/offline). - **Stage 3**: Launch the Triton Inference Server. - **Stage 4**: Run the gRPC benchmark client. - **Stage 5**: Run the single utterance client (gRPC for streaming, HTTP for offline). ### Export Models to TensorRT-LLM and Launch Server Inside the docker container, you can prepare the models and launch the Triton server by running stages 0 through 3. This involves downloading the original model, converting it to TensorRT-LLM format, building the optimized TensorRT engines, creating the necessary model repository structure for Triton, and finally starting the server. ```sh # This runs stages 0, 1, 2, and 3 bash run.sh 0 3 ``` *Note: Stage 2 prepares the model repository differently based on whether you intend to run streaming or offline inference later. You might need to re-run stage 2 if switching service types.* ### Single Utterance Client Run a single inference request. Specify `streaming` or `offline` as the third argument. **Streaming Mode (gRPC):** ```sh bash run.sh 5 5 streaming ``` This executes the `client_grpc.py` script with predefined example text and prompt audio in streaming mode. **Offline Mode (HTTP):** ```sh bash run.sh 5 5 offline ``` ### Benchmark using Dataset Run the benchmark client against the running Triton server. Specify `streaming` or `offline` as the third argument. ```sh # Run benchmark in streaming mode bash run.sh 4 4 streaming # Run benchmark in offline mode bash run.sh 4 4 offline # You can also customize parameters like num_task directly in client_grpc.py or via args if supported # Example from run.sh (streaming): # python3 client_grpc.py \ # --server-addr localhost \ # --model-name spark_tts \ # --num-tasks 2 \ # --mode streaming \ # --log-dir ./log_concurrent_tasks_2_streaming_new # Example customizing dataset (requires modifying client_grpc.py or adding args): # python3 client_grpc.py --num-tasks 2 --huggingface-dataset yuekai/seed_tts --split-name wenetspeech4tts --mode [streaming|offline] ``` ### Benchmark Results Decoding on a single L20 GPU, using 26 different prompt_audio/target_text [pairs](https://huggingface.co/datasets/yuekai/seed_tts), total audio duration 169 secs. | Mode | Note | Concurrency | Avg Latency | First Chunk Latency (P50) | RTF | |-------|-----------|-----------------------|---------|----------------|-| | Offline | [Code Commit](https://github.com/SparkAudio/Spark-TTS/tree/4d769ff782a868524f29e0be851ca64f8b22ebf1/runtime/triton_trtllm) | 1 | 876.24 ms |-| 0.1362| | Offline | [Code Commit](https://github.com/SparkAudio/Spark-TTS/tree/4d769ff782a868524f29e0be851ca64f8b22ebf1/runtime/triton_trtllm) | 2 | 920.97 ms |-|0.0737| | Offline | [Code Commit](https://github.com/SparkAudio/Spark-TTS/tree/4d769ff782a868524f29e0be851ca64f8b22ebf1/runtime/triton_trtllm) | 4 | 1611.51 ms |-| 0.0704| | Streaming | [Code Commit](https://github.com/yuekaizhang/Spark-TTS/commit/0e978a327f99aa49f0735f86eb09372f16410d86) | 1 | 913.28 ms |210.42 ms| 0.1501 | | Streaming | [Code Commit](https://github.com/yuekaizhang/Spark-TTS/commit/0e978a327f99aa49f0735f86eb09372f16410d86) | 2 | 1009.23 ms |226.08 ms |0.0862 | | Streaming | [Code Commit](https://github.com/yuekaizhang/Spark-TTS/commit/0e978a327f99aa49f0735f86eb09372f16410d86) | 4 | 1793.86 ms |1017.70 ms| 0.0824 |