aronsaras commited on
Commit
1d1ede2
·
verified ·
1 Parent(s): 969d5df

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +185 -0
app.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import torch
4
+ from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
5
+ from diffusers.models import AutoencoderKL
6
+ from PIL import Image
7
+ import cv2
8
+ import numpy as np
9
+ import gradio as gr
10
+ from gradio_imageslider import ImageSlider
11
+ from huggingface_hub import hf_hub_download
12
+ import subprocess
13
+
14
+ # Install Real-ESRGAN with dependencies
15
+ subprocess.run("pip install git+https://github.com/inference-sh/Real-ESRGAN.git basicsr opencv-python-headless", shell=True)
16
+
17
+ from RealESRGAN import RealESRGAN
18
+
19
+ # Force CPU usage
20
+ device = torch.device("cpu")
21
+ ENABLE_CPU_OFFLOAD = True # Enable CPU offloading to manage memory
22
+ USE_TORCH_COMPILE = False # Disable torch.compile for CPU compatibility
23
+
24
+ # Create model directories
25
+ os.makedirs("models/Stable-diffusion", exist_ok=True)
26
+ os.makedirs("models/ControlNet", exist_ok=True)
27
+ os.makedirs("models/VAE", exist_ok=True)
28
+ os.makedirs("models/upscalers", exist_ok=True)
29
+
30
+ # Download essential models (reduced set to save storage)
31
+ def download_models():
32
+ models = {
33
+ "MODEL": ("dantea1118/juggernaut_reborn", "juggernaut_reborn.safetensors", "models/Stable-diffusion"),
34
+ "CONTROLNET": ("lllyasviel/ControlNet-v1-1", "control_v11f1e_sd15_tile.pth", "models/ControlNet"),
35
+ "VAE": ("stabilityai/sd-vae-ft-mse-original", "vae-ft-mse-840000-ema-pruned.safetensors", "models/VAE"),
36
+ "UPSCALER_X2": ("ai-forever/Real-ESRGAN", "RealESRGAN_x2.pth", "models/upscalers"),
37
+ }
38
+ for model, (repo_id, filename, local_dir) in models.items():
39
+ print(f"Downloading {model}...")
40
+ hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir)
41
+
42
+ download_models()
43
+
44
+ # Timer decorator for performance tracking
45
+ def timer_func(func):
46
+ def wrapper(*args, **kwargs):
47
+ start_time = time.time()
48
+ result = func(*args, **kwargs)
49
+ print(f"{func.__name__} took {time.time() - start_time:.2f} seconds")
50
+ return result
51
+ return wrapper
52
+
53
+ # Lazy pipeline for memory efficiency
54
+ class LazyLoadPipeline:
55
+ def __init__(self):
56
+ self.pipe = None
57
+
58
+ @timer_func
59
+ def load(self):
60
+ if self.pipe is None:
61
+ print("Setting up pipeline...")
62
+ controlnet = ControlNetModel.from_single_file(
63
+ "models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
64
+ )
65
+ model_path = "models/Stable-diffusion/juggernaut_reborn.safetensors"
66
+ pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
67
+ model_path,
68
+ controlnet=controlnet,
69
+ torch_dtype=torch.float16,
70
+ use_safetensors=True,
71
+ )
72
+ vae = AutoencoderKL.from_single_file(
73
+ "models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
74
+ torch_dtype=torch.float16
75
+ )
76
+ pipe.vae = vae
77
+ pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
78
+ pipe.to(device)
79
+ if ENABLE_CPU_OFFLOAD:
80
+ print("Enabling CPU offloading...")
81
+ pipe.enable_model_cpu_offload()
82
+ return pipe
83
+ return self.pipe
84
+
85
+ def __call__(self, *args, **kwargs):
86
+ if self.pipe is None:
87
+ self.pipe = self.load()
88
+ return self.pipe(*args, **kwargs)
89
+
90
+ # Lazy Real-ESRGAN upscaler
91
+ class LazyRealESRGAN:
92
+ def __init__(self, device, scale):
93
+ self.device = device
94
+ self.scale = scale
95
+ self.model = None
96
+
97
+ def load_model(self):
98
+ if self.model is None:
99
+ self.model = RealESRGAN(self.device, scale=self.scale)
100
+ self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False)
101
+
102
+ def predict(self, img):
103
+ self.load_model()
104
+ return self.model.predict(img)
105
+
106
+ lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
107
+
108
+ @timer_func
109
+ def resize_and_upscale(input_image, resolution):
110
+ input_image = input_image.convert("RGB")
111
+ W, H = input_image.size
112
+ k = float(resolution) / min(H, W)
113
+ H = int(round(H * k / 64.0)) * 64
114
+ W = int(round(W * k / 64.0)) * 64
115
+ img = input_image.resize((W, H), resample=Image.LANCZOS)
116
+ img = lazy_realesrgan_x2.predict(img)
117
+ return img
118
+
119
+ @timer_func
120
+ def create_hdr_effect(original_image, hdr):
121
+ if hdr == 0:
122
+ return original_image
123
+ cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
124
+ factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0, 1.0 + 0.2 * hdr]
125
+ images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
126
+ merge_mertens = cv2.createMergeMertens()
127
+ hdr_image = merge_mertens.process(images)
128
+ hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
129
+ return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
130
+
131
+ lazy_pipe = LazyLoadPipeline()
132
+
133
+ @timer_func
134
+ def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
135
+ print("Starting image processing...")
136
+ condition_image = resize_and_upscale(input_image, resolution)
137
+ condition_image = create_hdr_effect(condition_image, hdr)
138
+
139
+ prompt = "masterpiece, best quality, highres"
140
+ negative_prompt = "low quality, normal quality, blurry, lowres"
141
+
142
+ options = {
143
+ "prompt": prompt,
144
+ "negative_prompt": negative_prompt,
145
+ "image": condition_image,
146
+ "control_image": condition_image,
147
+ "width": condition_image.size[0],
148
+ "height": condition_image.size[1],
149
+ "strength": strength,
150
+ "num_inference_steps": num_inference_steps,
151
+ "guidance_scale": guidance_scale,
152
+ "generator": torch.Generator(device=device).manual_seed(0),
153
+ }
154
+
155
+ print("Running inference...")
156
+ result = lazy_pipe(**options).images[0]
157
+ print("Image processing completed successfully")
158
+
159
+ return [np.array(input_image), np.array(result)]
160
+
161
+ # Gradio interface
162
+ title = """<h1 align="center">Image Upscaler with Tile ControlNet</h1>
163
+ <p align="center">CPU-optimized version for Hugging Face Spaces</p>"""
164
+
165
+ with gr.Blocks() as demo:
166
+ gr.HTML(title)
167
+ with gr.Row():
168
+ with gr.Column():
169
+ input_image = gr.Image(type="pil", label="Input Image")
170
+ run_button = gr.Button("Enhance Image")
171
+ with gr.Column():
172
+ output_slider = ImageSlider(label="Before / After", type="numpy")
173
+ with gr.Accordion("Advanced Options", open=False):
174
+ resolution = gr.Slider(minimum=256, maximum=1024, value=512, step=64, label="Resolution")
175
+ num_inference_steps = gr.Slider(minimum=1, maximum=20, value=10, step=1, label="Inference Steps")
176
+ strength = gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label="Strength")
177
+ hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
178
+ guidance_scale = gr.Slider(minimum=0, maximum=10, value=3, step=0.5, label="Guidance Scale")
179
+
180
+ run_button.click(fn=gradio_process_image,
181
+ inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
182
+ outputs=output_slider)
183
+
184
+ # Launch the app
185
+ demo.launch()