File size: 14,299 Bytes
59aa4e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import gradio as gr
from huggingface_hub import HfApi

def build_teleop_command(
    robot_type,
    robot_port,
    robot_id,
    cam_index,
    cam_width,
    cam_height,
    cam_fps,
    teleop_type,
    teleop_port,
    teleop_id,
    fps,
    teleop_duration,
    display_data,
):
    cam_cfg = (
        "{ front: {type: opencv, index_or_path: %d, width: %d, height: %d, fps: %d}}"
        % (cam_index, cam_width, cam_height, cam_fps)
    )

    cmd = [
        "python -m lerobot.teleoperate",
        f"--robot.type={robot_type}",
        f"--robot.port={robot_port}",
        f"--robot.id={robot_id}",
        f"--robot.cameras=\"{cam_cfg}\"",
        f"--teleop.type={teleop_type}",
        f"--teleop.port={teleop_port}",
        f"--teleop.id={teleop_id}",
        f"--fps={fps}",
    ]
    if teleop_duration:
        cmd.append(f"--teleop_time_s={teleop_duration}")
    cmd.append(f"--display_data={'true' if display_data else 'false'}")
    return " \\\n    ".join(cmd)


def build_record_command(
    robot_type,
    robot_port,
    robot_id,
    cam_index,
    cam_width,
    cam_height,
    cam_fps,
    teleop_type,
    teleop_port,
    teleop_id,
    display_data,
    dataset_repo,
    num_episodes,
    single_task,
    resume,
    push_to_hub,
    use_existing,
    existing_ds,
):
    # if using existing dataset, override dataset_repo
    if use_existing and existing_ds:
        dataset_repo = existing_ds

    camera_cfg = (
        "{ front: {type: opencv, index_or_path: %d, width: %d, height: %d, fps: %d}}"
        % (cam_index, cam_width, cam_height, cam_fps)
    )
    cmd = [
        "python -m lerobot.record",
        f"--robot.type={robot_type}",
        f"--robot.port={robot_port}",
        f"--robot.id={robot_id}",
        f"--robot.cameras=\"{camera_cfg}\"",
        f"--teleop.type={teleop_type}",
        f"--teleop.port={teleop_port}",
        f"--teleop.id={teleop_id}",
        f"--display_data={'true' if display_data else 'false'}",
        f"--dataset.repo_id={dataset_repo}",
        f"--dataset.num_episodes={num_episodes}",
        f"--dataset.single_task=\"{single_task}\"",
    ]
    cmd.append(f"--dataset.push_to_hub={'true' if push_to_hub else 'false'}")
    if resume:
        cmd.append("--resume=True")
    return " \\\n    ".join(cmd)


def build_train_command(
    policy_path,
    dataset_repo,
    batch_size,
    steps,
    output_dir,
    job_name,
    device,
    wandb_enable,
    policy_repo_id,
):
    cmd = [
        "python -m lerobot.scripts.train",
        f"--policy.path={policy_path}",
        f"--dataset.repo_id={dataset_repo}",
        f"--batch_size={batch_size}",
        f"--steps={steps}",
        f"--output_dir={output_dir}",
        f"--job_name={job_name}",
        f"--policy.device={device}",
        f"--wandb.enable={'true' if wandb_enable else 'false'}",
        f"--policy.repo_id={policy_repo_id}" if policy_repo_id else "",
    ]
    # filter empty strings
    cmd = [c for c in cmd if c]
    return " \\\n    ".join(cmd)


def build_eval_command(
    robot_type,
    robot_port,
    robot_id,
    cam_index,
    cam_width,
    cam_height,
    cam_fps,
    display_data,
    dataset_repo,
    num_episodes,
    single_task,
    policy_path,
    resume,
):
    camera_cfg = (
        "{ front: {type: opencv, index_or_path: %d, width: %d, height: %d, fps: %d}}"
        % (cam_index, cam_width, cam_height, cam_fps)
    )

    cmd = [
        "python -m lerobot.record",
        f"--robot.type={robot_type}",
        f"--robot.port={robot_port}",
        f"--robot.id={robot_id}",
        f"--robot.cameras=\"{camera_cfg}\"",
        f"--display_data={'true' if display_data else 'false'}",
        f"--dataset.repo_id={dataset_repo}",
        f"--dataset.num_episodes={num_episodes}",
        f"--dataset.single_task=\"{single_task}\"",
        f"--policy.path={policy_path}",
    ]
    if resume:
        cmd.append("--resume=True")
    return " \\\n    ".join(cmd)


# Helper to list datasets on Hugging Face for given username
def _list_remote_datasets(username: str):
    try:
        api = HfApi()
        datasets = api.list_datasets(author=username)
        return sorted([d.id for d in datasets])
    except Exception:
        return []


def build_ui():
    with gr.Blocks(title="Lerobot Scripts Controller (Generate Only)") as demo:
        hf_username_tb = gr.Textbox(label="HF Username", value="arpitg1304")
        with gr.Tabs():
            # Teleoperate Tab
            with gr.TabItem("Teleoperate Robot"):
                gr.Markdown("### Teleoperate robot with camera")
                with gr.Row():
                    robot_type = gr.Textbox(label="Robot Type", value="so101_follower")
                    robot_port = gr.Textbox(label="Robot Port", value="/dev/ttyACM0")
                    robot_id = gr.Textbox(label="Robot ID", value="follower")
                with gr.Row():
                    cam_index = gr.Number(label="Cam Index", value=0, precision=0)
                    cam_width = gr.Number(label="Width", value=640, precision=0)
                    cam_height = gr.Number(label="Height", value=480, precision=0)
                    cam_fps = gr.Number(label="FPS", value=30, precision=0)
                with gr.Row():
                    teleop_type = gr.Textbox(label="Teleop Type", value="so101_leader")
                    teleop_port = gr.Textbox(label="Teleop Port", value="/dev/ttyACM1")
                    teleop_id = gr.Textbox(label="Teleop ID", value="leader")
                with gr.Row():
                    fps = gr.Number(label="Loop FPS", value=60, precision=0)
                    teleop_duration = gr.Number(label="Duration (s)", value=60, precision=0)
                    display_data = gr.Checkbox(label="Display Data", value=True)
                teleop_cmd = gr.Textbox(label="Generated Command", interactive=False, lines=16)

                inputs_teleop = [
                    robot_type,
                    robot_port,
                    robot_id,
                    cam_index,
                    cam_width,
                    cam_height,
                    cam_fps,
                    teleop_type,
                    teleop_port,
                    teleop_id,
                    fps,
                    teleop_duration,
                    display_data,
                ]
                gr.Button("Generate Command").click(build_teleop_command, inputs_teleop, outputs=teleop_cmd)

            # Record Data Tab
            with gr.TabItem("Record Data"):
                gr.Markdown("### Record episodes with policy")
                with gr.Row():
                    robot_type2 = gr.Textbox(label="Robot Type", value="so101_follower")
                    robot_port2 = gr.Textbox(label="Robot Port", value="/dev/ttyACM0")
                    robot_id2 = gr.Textbox(label="Robot ID", value="follower")
                with gr.Row():
                    cam_index2 = gr.Number(label="Cam Index", value=0, precision=0)
                    cam_width2 = gr.Number(label="Width", value=640, precision=0)
                    cam_height2 = gr.Number(label="Height", value=480, precision=0)
                    cam_fps2 = gr.Number(label="FPS", value=30, precision=0)
                with gr.Row():
                    teleop_type_r = gr.Textbox(label="Teleop Type", value="so101_leader")
                    teleop_port_r = gr.Textbox(label="Teleop Port", value="/dev/ttyACM1")
                    teleop_id_r = gr.Textbox(label="Teleop ID", value="leader")
                with gr.Row():
                    display_data2 = gr.Checkbox(label="Display Data", value=True)
                    dataset_repo = gr.Textbox(label="Dataset Repo", value="")
                    num_episodes = gr.Number(label="Num Episodes", value=2, precision=0)
                    single_task = gr.Textbox(label="Single Task", value="Grab the cylinder")
                    resume_chk = gr.Checkbox(label="Resume", value=False)
                    push_hub_chk = gr.Checkbox(label="Push to Hub", value=False)
                with gr.Row():
                    use_existing = gr.Checkbox(label="Use Existing Dataset", value=False)
                    existing_dd = gr.Dropdown(label="User Datasets", choices=_list_remote_datasets(hf_username_tb.value), visible=False)
                # Toggle dropdown visibility
                use_existing.change(lambda f: gr.update(visible=f), inputs=use_existing, outputs=existing_dd)

                # Update dataset choices when username changes
                def _update_ds_choices(username):
                    return gr.update(choices=_list_remote_datasets(username))

                hf_username_tb.change(_update_ds_choices, inputs=hf_username_tb, outputs=existing_dd)

                record_cmd = gr.Textbox(label="Generated Command", interactive=False, lines=16)
                inputs_rec = [
                    robot_type2,
                    robot_port2,
                    robot_id2,
                    cam_index2,
                    cam_width2,
                    cam_height2,
                    cam_fps2,
                    teleop_type_r,
                    teleop_port_r,
                    teleop_id_r,
                    display_data2,
                    dataset_repo,
                    num_episodes,
                    single_task,
                    resume_chk,
                    push_hub_chk,
                    use_existing,
                    existing_dd,
                ]
                gr.Button("Generate Command").click(build_record_command, inputs_rec, record_cmd)

            # Train Policy Tab
            with gr.TabItem("Train Policy"):
                gr.Markdown("### Train Policy")
                # Row 1: Policy path (full width)
                policy_path_t = gr.Textbox(label="Base Policy Path", value="lerobot/smolvla_base")

                # Row 2: Dataset + Device + WandB enable
                with gr.Row():
                    dataset_repo_t = gr.Dropdown(
                        label="User Dataset",
                        choices=_list_remote_datasets(hf_username_tb.value),
                        scale=4,
                    )
                    device_t = gr.Dropdown(label="Device", choices=["cpu", "cuda"], value="cuda", scale=1)
                    wandb_chk = gr.Checkbox(label="W&B", value=True, scale=1)

                # Row 3: Batch size & Steps
                with gr.Row():
                    batch_size_t = gr.Number(label="Batch Size", value=16, precision=0, scale=1)
                    steps_t = gr.Number(label="Steps", value=20000, precision=0, scale=1)

                # Row 4: Output dir (full width)
                output_dir_t = gr.Textbox(label="Output Dir", value="outputs/train/my_smolvla_1")

                # Row 5: Job name & Policy repo id
                with gr.Row():
                    job_name_t = gr.Textbox(label="Job Name", value="smolvla_place_cylinder", scale=1)
                    policy_repo_t = gr.Textbox(label="Policy Repo ID (optional)", value="", scale=1)

                # Update train dataset dropdown when username changes
                hf_username_tb.change(_update_ds_choices, inputs=hf_username_tb, outputs=dataset_repo_t)

                train_cmd = gr.Textbox(label="Generated Command", interactive=False, lines=16)
                gr.Button("Generate Command").click(
                    build_train_command,
                    [
                        policy_path_t,
                        dataset_repo_t,
                        batch_size_t,
                        steps_t,
                        output_dir_t,
                        job_name_t,
                        device_t,
                        wandb_chk,
                        policy_repo_t,
                    ],
                    train_cmd,
                )

            # Evaluate Policy Tab
            with gr.TabItem("Evaluate Policy"):
                gr.Markdown("### Evaluate Policy")
                with gr.Row():
                    robot_type_e = gr.Textbox(label="Robot Type", value="so101_follower")
                    robot_port_e = gr.Textbox(label="Robot Port", value="/dev/ttyACM0")
                    robot_id_e = gr.Textbox(label="Robot ID", value="follower")
                with gr.Row():
                    cam_index_e = gr.Number(label="Cam Index", value=0, precision=0)
                    cam_width_e = gr.Number(label="Width", value=640, precision=0)
                    cam_height_e = gr.Number(label="Height", value=480, precision=0)
                    cam_fps_e = gr.Number(label="FPS", value=30, precision=0)
                with gr.Row():
                    display_data_e = gr.Checkbox(label="Display Data", value=True)
                    dataset_repo_e = gr.Dropdown(label="User Dataset", choices=_list_remote_datasets(hf_username_tb.value))
                    num_episodes_e = gr.Number(label="Num Episodes", value=2, precision=0)
                    single_task_e = gr.Textbox(label="Single Task", value="place cylinder")
                with gr.Row():
                    policy_path_e = gr.Textbox(label="Policy Path", value="arpitg1304/smolvla_place_cylinder")
                    resume_e = gr.Checkbox(label="Resume", value=True)
                eval_cmd = gr.Textbox(label="Generated Command", interactive=False, lines=16)
                # update evaluate dataset dropdown when username changes
                hf_username_tb.change(_update_ds_choices, inputs=hf_username_tb, outputs=dataset_repo_e)

                inputs_eval = [
                    robot_type_e,
                    robot_port_e,
                    robot_id_e,
                    cam_index_e,
                    cam_width_e,
                    cam_height_e,
                    cam_fps_e,
                    display_data_e,
                    dataset_repo_e,
                    num_episodes_e,
                    single_task_e,
                    policy_path_e,
                    resume_e,
                ]
                gr.Button("Generate Command").click(
                    build_eval_command,
                    inputs_eval,
                    eval_cmd,
                )

    return demo


if __name__ == "__main__":
    build_ui().launch()