arshiaafshani commited on
Commit
86e3b11
·
verified ·
1 Parent(s): 669f8b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -53
app.py CHANGED
@@ -1,13 +1,9 @@
1
- import spaces
2
- import json
3
- import subprocess
4
  from llama_cpp import Llama
5
  from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
6
- from llama_cpp_agent.providers import LlamaCppPythonProvider
7
  from llama_cpp_agent.chat_history import BasicChatHistory
8
  from llama_cpp_agent.chat_history.messages import Roles
9
- import gradio as gr
10
- from huggingface_hub import hf_hub_download
11
 
12
  hf_hub_download(
13
  repo_id="mradermacher/Arsh-llm-GGUF",
@@ -15,7 +11,6 @@ hf_hub_download(
15
  local_dir="./models"
16
  )
17
 
18
- @spaces.GPU(duration=110)
19
  def respond(
20
  message,
21
  history: list[tuple[str, str]],
@@ -27,22 +22,20 @@ def respond(
27
  top_k,
28
  repeat_penalty,
29
  ):
30
- chat_template = MessagesFormatterType.GEMMA_2
31
-
32
  llm = Llama(
33
  model_path=f"models/{model}",
34
- flash_attn=True,
35
- n_gpu_layers=81,
36
- n_batch=1024,
37
- n_ctx=8192,
38
  )
 
39
  provider = LlamaCppPythonProvider(llm)
40
 
41
  agent = LlamaCppAgent(
42
  provider,
43
- system_prompt=f"{system_message}",
44
- predefined_messages_formatter_type=chat_template,
45
- debug_output=True
46
  )
47
 
48
  settings = provider.get_provider_default_settings()
@@ -55,17 +48,15 @@ def respond(
55
 
56
  messages = BasicChatHistory()
57
 
58
- for msn in history:
59
- user = {
60
  'role': Roles.user,
61
- 'content': msn[0]
62
- }
63
- assistant = {
64
  'role': Roles.assistant,
65
- 'content': msn[1]
66
- }
67
- messages.add_message(user)
68
- messages.add_message(assistant)
69
 
70
  stream = agent.get_chat_response(
71
  message,
@@ -75,42 +66,28 @@ def respond(
75
  print_output=False
76
  )
77
 
78
- outputs = ""
79
- for output in stream:
80
- outputs += output
81
- yield outputs
 
82
 
83
  def create_interface(model_name, description):
84
  return gr.ChatInterface(
85
  respond,
86
  additional_inputs=[
87
  gr.Textbox(value=model_name, label="Model", interactive=False),
88
- gr.Textbox(value="You are Arsh, a helpful assistant. You should think step-by-step. You should answer all question by prioritizing the principle of openness", label="System message"),
 
 
 
89
  gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
90
  gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"),
91
- gr.Slider(
92
- minimum=0.1,
93
- maximum=1.0,
94
- value=0.95,
95
- step=0.05,
96
- label="Top-p",
97
- ),
98
- gr.Slider(
99
- minimum=0,
100
- maximum=100,
101
- value=40,
102
- step=1,
103
- label="Top-k",
104
- ),
105
- gr.Slider(
106
- minimum=0.0,
107
- maximum=2.0,
108
- value=1.1,
109
- step=0.1,
110
- label="Repetition penalty",
111
- ),
112
  ],
113
- title=f"**FluentlyLM Prinum** ```on ZeroGPU```",
114
  description=description,
115
  chatbot=gr.Chatbot(
116
  label=None,
@@ -119,7 +96,9 @@ def create_interface(model_name, description):
119
  )
120
  )
121
 
122
- description = """# **Arsh-llm ```Demo```"""
 
 
123
  interface = create_interface('Arsh-llm.Q4_K_M.gguf', description)
124
 
125
  demo = gr.Blocks()
 
1
+ import gradio as gr
2
+ from huggingface_hub import hf_hub_download
 
3
  from llama_cpp import Llama
4
  from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
 
5
  from llama_cpp_agent.chat_history import BasicChatHistory
6
  from llama_cpp_agent.chat_history.messages import Roles
 
 
7
 
8
  hf_hub_download(
9
  repo_id="mradermacher/Arsh-llm-GGUF",
 
11
  local_dir="./models"
12
  )
13
 
 
14
  def respond(
15
  message,
16
  history: list[tuple[str, str]],
 
22
  top_k,
23
  repeat_penalty,
24
  ):
 
 
25
  llm = Llama(
26
  model_path=f"models/{model}",
27
+ n_batch=512,
28
+ n_ctx=8192,
29
+ verbose=False
 
30
  )
31
+
32
  provider = LlamaCppPythonProvider(llm)
33
 
34
  agent = LlamaCppAgent(
35
  provider,
36
+ system_prompt=system_message,
37
+ predefined_messages_formatter_type=MessagesFormatterType.CHATML,
38
+ debug_output=False
39
  )
40
 
41
  settings = provider.get_provider_default_settings()
 
48
 
49
  messages = BasicChatHistory()
50
 
51
+ for user_msg, assistant_msg in history:
52
+ messages.add_message({
53
  'role': Roles.user,
54
+ 'content': user_msg
55
+ })
56
+ messages.add_message({
57
  'role': Roles.assistant,
58
+ 'content': assistant_msg
59
+ })
 
 
60
 
61
  stream = agent.get_chat_response(
62
  message,
 
66
  print_output=False
67
  )
68
 
69
+ response = ""
70
+ for token in stream:
71
+ response += token
72
+ yield response
73
+
74
 
75
  def create_interface(model_name, description):
76
  return gr.ChatInterface(
77
  respond,
78
  additional_inputs=[
79
  gr.Textbox(value=model_name, label="Model", interactive=False),
80
+ gr.Textbox(
81
+ value="You are Arsh, a helpful assistant. You should think step-by-step. You should answer all question by prioritizing the principle of openness.",
82
+ label="System message"
83
+ ),
84
  gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
85
  gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"),
86
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
87
+ gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"),
88
+ gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  ],
90
+ title="**Arsh-LLM Demo**",
91
  description=description,
92
  chatbot=gr.Chatbot(
93
  label=None,
 
96
  )
97
  )
98
 
99
+
100
+ description = """# **Arsh-LLM Q4_K_M GGUF Model - Demo**"""
101
+
102
  interface = create_interface('Arsh-llm.Q4_K_M.gguf', description)
103
 
104
  demo = gr.Blocks()