arshiaafshani commited on
Commit
f9ce403
·
verified ·
1 Parent(s): 391e659

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +110 -43
app.py CHANGED
@@ -1,64 +1,131 @@
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("arshiaafshani/arshGpt")
8
 
 
 
 
 
 
9
 
 
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
 
13
  system_message,
14
  max_tokens,
15
  temperature,
16
  top_p,
 
 
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
41
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import spaces
2
+ import json
3
+ import subprocess
4
+ from llama_cpp import Llama
5
+ from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
6
+ from llama_cpp_agent.providers import LlamaCppPythonProvider
7
+ from llama_cpp_agent.chat_history import BasicChatHistory
8
+ from llama_cpp_agent.chat_history.messages import Roles
9
  import gradio as gr
10
+ from huggingface_hub import hf_hub_download
 
 
 
 
 
11
 
12
+ hf_hub_download(
13
+ repo_id="mradermacher/Arsh-llm-GGUF",
14
+ filename="Arsh-llm.Q4_K_M.gguf",
15
+ local_dir="./models"
16
+ )
17
 
18
+ @spaces.GPU(duration=110)
19
  def respond(
20
  message,
21
  history: list[tuple[str, str]],
22
+ model,
23
  system_message,
24
  max_tokens,
25
  temperature,
26
  top_p,
27
+ top_k,
28
+ repeat_penalty,
29
  ):
30
+ chat_template = MessagesFormatterType.GEMMA_2
31
 
32
+ llm = Llama(
33
+ model_path=f"models/{model}",
34
+ flash_attn=True,
35
+ n_gpu_layers=81,
36
+ n_batch=1024,
37
+ n_ctx=8192,
38
+ )
39
+ provider = LlamaCppPythonProvider(llm)
40
 
41
+ agent = LlamaCppAgent(
42
+ provider,
43
+ system_prompt=f"{system_message}",
44
+ predefined_messages_formatter_type=chat_template,
45
+ debug_output=True
46
+ )
47
 
48
+ settings = provider.get_provider_default_settings()
49
+ settings.temperature = temperature
50
+ settings.top_k = top_k
51
+ settings.top_p = top_p
52
+ settings.max_tokens = max_tokens
53
+ settings.repeat_penalty = repeat_penalty
54
+ settings.stream = True
55
 
56
+ messages = BasicChatHistory()
 
 
 
 
 
 
 
57
 
58
+ for msn in history:
59
+ user = {
60
+ 'role': Roles.user,
61
+ 'content': msn[0]
62
+ }
63
+ assistant = {
64
+ 'role': Roles.assistant,
65
+ 'content': msn[1]
66
+ }
67
+ messages.add_message(user)
68
+ messages.add_message(assistant)
69
 
70
+ stream = agent.get_chat_response(
71
+ message,
72
+ llm_sampling_settings=settings,
73
+ chat_history=messages,
74
+ returns_streaming_generator=True,
75
+ print_output=False
76
+ )
77
 
78
+ outputs = ""
79
+ for output in stream:
80
+ outputs += output
81
+ yield outputs
82
+
83
+ def create_interface(model_name, description):
84
+ return gr.ChatInterface(
85
+ respond,
86
+ additional_inputs=[
87
+ gr.Textbox(value=model_name, label="Model", interactive=False),
88
+ gr.Textbox(value="You are Arsh, a helpful assistant. You should think step-by-step. You should answer all question by prioritizing the principle of openness", label="System message"),
89
+ gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
90
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"),
91
+ gr.Slider(
92
+ minimum=0.1,
93
+ maximum=1.0,
94
+ value=0.95,
95
+ step=0.05,
96
+ label="Top-p",
97
+ ),
98
+ gr.Slider(
99
+ minimum=0,
100
+ maximum=100,
101
+ value=40,
102
+ step=1,
103
+ label="Top-k",
104
+ ),
105
+ gr.Slider(
106
+ minimum=0.0,
107
+ maximum=2.0,
108
+ value=1.1,
109
+ step=0.1,
110
+ label="Repetition penalty",
111
+ ),
112
+ ],
113
+ title=f"**FluentlyLM Prinum** ```on ZeroGPU```",
114
+ description=description,
115
+ chatbot=gr.Chatbot(
116
+ label=None,
117
+ scale=1,
118
+ show_copy_button=True
119
+ )
120
+ )
121
+
122
+ description = """# **Arsh-llm ```Demo```"""
123
+ interface = create_interface('Arsh-llm.Q4_K_M.gguf', description)
124
+
125
+ demo = gr.Blocks()
126
 
127
+ with demo:
128
+ interface.render()
129
 
130
  if __name__ == "__main__":
131
+ demo.launch()