Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,667 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import spaces
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
import tempfile
|
6 |
+
import subprocess
|
7 |
+
import sys
|
8 |
+
from pathlib import Path
|
9 |
+
import datetime
|
10 |
+
import math
|
11 |
+
import random
|
12 |
+
import gc
|
13 |
+
import json
|
14 |
+
import numpy as np
|
15 |
+
from PIL import Image
|
16 |
+
from moviepy.editor import VideoFileClip, AudioFileClip
|
17 |
+
import librosa
|
18 |
+
from omegaconf import OmegaConf
|
19 |
+
from transformers import AutoTokenizer, Wav2Vec2Model, Wav2Vec2Processor
|
20 |
+
from diffusers import FlowMatchEulerDiscreteScheduler
|
21 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
22 |
+
|
23 |
+
def setup_repository():
|
24 |
+
if not os.path.exists("echomimic_v3"):
|
25 |
+
print("π Cloning EchoMimicV3 repository...")
|
26 |
+
subprocess.run([
|
27 |
+
"git", "clone",
|
28 |
+
"https://github.com/antgroup/echomimic_v3.git"
|
29 |
+
], check=True)
|
30 |
+
print("β
Repository cloned successfully")
|
31 |
+
|
32 |
+
sys.path.insert(0, "echomimic_v3")
|
33 |
+
print("β
Repository added to Python path")
|
34 |
+
|
35 |
+
def download_models():
|
36 |
+
print("π₯ Downloading models...")
|
37 |
+
os.makedirs("models", exist_ok=True)
|
38 |
+
try:
|
39 |
+
print("π Downloading base model...")
|
40 |
+
base_model_path = snapshot_download(
|
41 |
+
repo_id="alibaba-pai/Wan2.1-Fun-V1.1-1.3B-InP",
|
42 |
+
local_dir="models/Wan2.1-Fun-V1.1-1.3B-InP",
|
43 |
+
local_dir_use_symlinks=False
|
44 |
+
)
|
45 |
+
print(f"β
Base model downloaded to: {base_model_path}")
|
46 |
+
|
47 |
+
print("π Downloading EchoMimicV3 transformer...")
|
48 |
+
os.makedirs("models/transformer", exist_ok=True)
|
49 |
+
transformer_file = hf_hub_download(
|
50 |
+
repo_id="BadToBest/EchoMimicV3",
|
51 |
+
filename="transformer/diffusion_pytorch_model.safetensors",
|
52 |
+
local_dir="models",
|
53 |
+
local_dir_use_symlinks=False
|
54 |
+
)
|
55 |
+
print(f"β
Transformer downloaded to: {transformer_file}")
|
56 |
+
|
57 |
+
config_file = hf_hub_download(
|
58 |
+
repo_id="BadToBest/EchoMimicV3",
|
59 |
+
filename="transformer/config.json",
|
60 |
+
local_dir="models",
|
61 |
+
local_dir_use_symlinks=False
|
62 |
+
)
|
63 |
+
print(f"β
Config downloaded to: {config_file}")
|
64 |
+
|
65 |
+
print("π Downloading Wav2Vec model...")
|
66 |
+
wav2vec_path = snapshot_download(
|
67 |
+
repo_id="facebook/wav2vec2-base-960h",
|
68 |
+
local_dir="models/wav2vec2-base-960h",
|
69 |
+
local_dir_use_symlinks=False
|
70 |
+
)
|
71 |
+
print(f"β
Wav2Vec model downloaded to: {wav2vec_path}")
|
72 |
+
|
73 |
+
print("β
All models downloaded successfully!")
|
74 |
+
return True
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
print(f"β Error downloading models: {e}")
|
78 |
+
return False
|
79 |
+
|
80 |
+
def download_examples():
|
81 |
+
print("π Downloading example files...")
|
82 |
+
os.makedirs("examples", exist_ok=True)
|
83 |
+
try:
|
84 |
+
example_files = [
|
85 |
+
"datasets/echomimicv3_demos/imgs/demo_ch_woman_04.png",
|
86 |
+
"datasets/echomimicv3_demos/audios/demo_ch_woman_04.WAV",
|
87 |
+
"datasets/echomimicv3_demos/prompts/demo_ch_woman_04.txt",
|
88 |
+
"datasets/echomimicv3_demos/imgs/guitar_woman_01.png",
|
89 |
+
"datasets/echomimicv3_demos/audios/guitar_woman_01.WAV",
|
90 |
+
"datasets/echomimicv3_demos/prompts/guitar_woman_01.txt"
|
91 |
+
]
|
92 |
+
repo_url = "https://github.com/antgroup/echomimic_v3/raw/main/"
|
93 |
+
for file_path in example_files:
|
94 |
+
try:
|
95 |
+
import urllib.request
|
96 |
+
filename = os.path.basename(file_path)
|
97 |
+
local_path = f"examples/{filename}"
|
98 |
+
if not os.path.exists(local_path):
|
99 |
+
print(f"π Downloading {filename}...")
|
100 |
+
urllib.request.urlretrieve(f"{repo_url}{file_path}", local_path)
|
101 |
+
print(f"β
Downloaded {filename}")
|
102 |
+
else:
|
103 |
+
print(f"β
{filename} already exists")
|
104 |
+
except Exception as e:
|
105 |
+
print(f"β οΈ Could not download {filename}: {e}")
|
106 |
+
print("β
Example files downloaded!")
|
107 |
+
return True
|
108 |
+
except Exception as e:
|
109 |
+
print(f"β Error downloading examples: {e}")
|
110 |
+
return False
|
111 |
+
|
112 |
+
setup_repository()
|
113 |
+
|
114 |
+
from src.dist import set_multi_gpus_devices
|
115 |
+
from src.wan_vae import AutoencoderKLWan
|
116 |
+
from src.wan_image_encoder import CLIPModel
|
117 |
+
from src.wan_text_encoder import WanT5EncoderModel
|
118 |
+
from src.wan_transformer3d_audio import WanTransformerAudioMask3DModel
|
119 |
+
from src.pipeline_wan_fun_inpaint_audio import WanFunInpaintAudioPipeline
|
120 |
+
from src.utils import filter_kwargs, get_image_to_video_latent3, save_videos_grid
|
121 |
+
from src.fm_solvers import FlowDPMSolverMultistepScheduler
|
122 |
+
from src.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
123 |
+
from src.cache_utils import get_teacache_coefficients
|
124 |
+
from src.face_detect import get_mask_coord
|
125 |
+
|
126 |
+
class ComprehensiveConfig:
|
127 |
+
def __init__(self):
|
128 |
+
self.ulysses_degree = 1
|
129 |
+
self.ring_degree = 1
|
130 |
+
self.fsdp_dit = False
|
131 |
+
self.config_path = "echomimic_v3/config/config.yaml"
|
132 |
+
self.model_name = "models/Wan2.1-Fun-V1.1-1.3B-InP"
|
133 |
+
self.transformer_path = "models/transformer/diffusion_pytorch_model.safetensors"
|
134 |
+
self.wav2vec_model_dir = "models/wav2vec2-base-960h"
|
135 |
+
self.weight_dtype = torch.bfloat16
|
136 |
+
self.sample_size = [768, 768]
|
137 |
+
self.sampler_name = "Flow_DPM++"
|
138 |
+
self.lora_weight = 1.0
|
139 |
+
|
140 |
+
config = ComprehensiveConfig()
|
141 |
+
pipeline = None
|
142 |
+
wav2vec_processor = None
|
143 |
+
wav2vec_model = None
|
144 |
+
|
145 |
+
def load_wav2vec_models(wav2vec_model_dir):
|
146 |
+
print(f"π Loading Wav2Vec models from {wav2vec_model_dir}...")
|
147 |
+
try:
|
148 |
+
processor = Wav2Vec2Processor.from_pretrained(wav2vec_model_dir)
|
149 |
+
model = Wav2Vec2Model.from_pretrained(wav2vec_model_dir).eval()
|
150 |
+
model.requires_grad_(False)
|
151 |
+
print("β
Wav2Vec models loaded successfully")
|
152 |
+
return processor, model
|
153 |
+
except Exception as e:
|
154 |
+
print(f"β Error loading Wav2Vec models: {e}")
|
155 |
+
raise
|
156 |
+
|
157 |
+
def extract_audio_features(audio_path, processor, model):
|
158 |
+
try:
|
159 |
+
sr = 16000
|
160 |
+
audio_segment, sample_rate = librosa.load(audio_path, sr=sr)
|
161 |
+
input_values = processor(audio_segment, sampling_rate=sample_rate, return_tensors="pt").input_values
|
162 |
+
input_values = input_values.to(model.device)
|
163 |
+
with torch.no_grad():
|
164 |
+
features = model(input_values).last_hidden_state
|
165 |
+
return features.squeeze(0)
|
166 |
+
except Exception as e:
|
167 |
+
print(f"β Error extracting audio features: {e}")
|
168 |
+
raise
|
169 |
+
|
170 |
+
def get_sample_size(image, default_size):
|
171 |
+
width, height = image.size
|
172 |
+
original_area = width * height
|
173 |
+
default_area = default_size[0] * default_size[1]
|
174 |
+
if default_area < original_area:
|
175 |
+
ratio = math.sqrt(original_area / default_area)
|
176 |
+
width = width / ratio // 16 * 16
|
177 |
+
height = height / ratio // 16 * 16
|
178 |
+
else:
|
179 |
+
width = width // 16 * 16
|
180 |
+
height = height // 16 * 16
|
181 |
+
return int(height), int(width)
|
182 |
+
|
183 |
+
def get_ip_mask(coords):
|
184 |
+
y1, y2, x1, x2, h, w = coords
|
185 |
+
Y, X = torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij')
|
186 |
+
mask = (Y.unsqueeze(-1) >= y1) & (Y.unsqueeze(-1) < y2) & (X.unsqueeze(-1) >= x1) & (X.unsqueeze(-1) < x2)
|
187 |
+
mask = mask.reshape(-1)
|
188 |
+
return mask.float()
|
189 |
+
|
190 |
+
def initialize_models():
|
191 |
+
global pipeline, wav2vec_processor, wav2vec_model, config
|
192 |
+
print("π Initializing EchoMimicV3 models...")
|
193 |
+
try:
|
194 |
+
if not download_models():
|
195 |
+
raise Exception("Failed to download required models")
|
196 |
+
download_examples()
|
197 |
+
device = set_multi_gpus_devices(config.ulysses_degree, config.ring_degree)
|
198 |
+
print(f"β
Device set to: {device}")
|
199 |
+
cfg = OmegaConf.load(config.config_path)
|
200 |
+
print(f"β
Config loaded from {config.config_path}")
|
201 |
+
print("π Loading transformer...")
|
202 |
+
transformer = WanTransformerAudioMask3DModel.from_pretrained(
|
203 |
+
os.path.join(config.model_name, cfg['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')),
|
204 |
+
transformer_additional_kwargs=OmegaConf.to_container(cfg['transformer_additional_kwargs']),
|
205 |
+
torch_dtype=config.weight_dtype,
|
206 |
+
)
|
207 |
+
if config.transformer_path is not None and os.path.exists(config.transformer_path):
|
208 |
+
print(f"π Loading custom transformer weights from {config.transformer_path}...")
|
209 |
+
from safetensors.torch import load_file
|
210 |
+
state_dict = load_file(config.transformer_path)
|
211 |
+
state_dict = state_dict.get("state_dict", state_dict)
|
212 |
+
missing, unexpected = transformer.load_state_dict(state_dict, strict=False)
|
213 |
+
print(f"β
Custom transformer weights loaded - Missing: {len(missing)}, Unexpected: {len(unexpected)}")
|
214 |
+
|
215 |
+
print("π Loading VAE...")
|
216 |
+
vae = AutoencoderKLWan.from_pretrained(
|
217 |
+
os.path.join(config.model_name, cfg['vae_kwargs'].get('vae_subpath', 'vae')),
|
218 |
+
additional_kwargs=OmegaConf.to_container(cfg['vae_kwargs']),
|
219 |
+
).to(config.weight_dtype)
|
220 |
+
print("β
VAE loaded")
|
221 |
+
|
222 |
+
print("π Loading tokenizer...")
|
223 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
224 |
+
os.path.join(config.model_name, cfg['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')),
|
225 |
+
)
|
226 |
+
print("β
Tokenizer loaded")
|
227 |
+
|
228 |
+
print("π Loading text encoder...")
|
229 |
+
text_encoder = WanT5EncoderModel.from_pretrained(
|
230 |
+
os.path.join(config.model_name, cfg['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')),
|
231 |
+
additional_kwargs=OmegaConf.to_container(cfg['text_encoder_kwargs']),
|
232 |
+
torch_dtype=config.weight_dtype,
|
233 |
+
).eval()
|
234 |
+
print("β
Text encoder loaded")
|
235 |
+
|
236 |
+
print("π Loading CLIP image encoder...")
|
237 |
+
clip_image_encoder = CLIPModel.from_pretrained(
|
238 |
+
os.path.join(config.model_name, cfg['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')),
|
239 |
+
).to(config.weight_dtype).eval()
|
240 |
+
print("β
CLIP image encoder loaded")
|
241 |
+
|
242 |
+
print("π Loading scheduler...")
|
243 |
+
scheduler_cls_map = {
|
244 |
+
"Flow": FlowMatchEulerDiscreteScheduler,
|
245 |
+
"Flow_Unipc": FlowUniPCMultistepScheduler,
|
246 |
+
"Flow_DPM++": FlowDPMSolverMultistepScheduler,
|
247 |
+
}
|
248 |
+
scheduler_cls = scheduler_cls_map.get(config.sampler_name, FlowDPMSolverMultistepScheduler)
|
249 |
+
scheduler = scheduler_cls(**filter_kwargs(scheduler_cls, OmegaConf.to_container(cfg['scheduler_kwargs'])))
|
250 |
+
print("β
Scheduler loaded")
|
251 |
+
|
252 |
+
print("π Creating pipeline...")
|
253 |
+
pipeline = WanFunInpaintAudioPipeline(
|
254 |
+
transformer=transformer,
|
255 |
+
vae=vae,
|
256 |
+
tokenizer=tokenizer,
|
257 |
+
text_encoder=text_encoder,
|
258 |
+
scheduler=scheduler,
|
259 |
+
clip_image_encoder=clip_image_encoder,
|
260 |
+
)
|
261 |
+
pipeline.to(device=device)
|
262 |
+
print("β
Pipeline created and moved to device")
|
263 |
+
|
264 |
+
print("π Loading Wav2Vec models...")
|
265 |
+
wav2vec_processor, wav2vec_model = load_wav2vec_models(config.wav2vec_model_dir)
|
266 |
+
wav2vec_model.to(device)
|
267 |
+
print("β
Wav2Vec models loaded")
|
268 |
+
|
269 |
+
print("π All models initialized successfully!")
|
270 |
+
return True
|
271 |
+
except Exception as e:
|
272 |
+
print(f"β Model initialization failed: {str(e)}")
|
273 |
+
import traceback
|
274 |
+
traceback.print_exc()
|
275 |
+
return False
|
276 |
+
|
277 |
+
@spaces.GPU(duration=120)
|
278 |
+
def generate_video(
|
279 |
+
image_path,
|
280 |
+
audio_path,
|
281 |
+
prompt,
|
282 |
+
negative_prompt,
|
283 |
+
seed_param,
|
284 |
+
num_inference_steps,
|
285 |
+
guidance_scale,
|
286 |
+
audio_guidance_scale,
|
287 |
+
fps,
|
288 |
+
partial_video_length,
|
289 |
+
overlap_video_length,
|
290 |
+
neg_scale,
|
291 |
+
neg_steps,
|
292 |
+
use_dynamic_cfg,
|
293 |
+
use_dynamic_acfg,
|
294 |
+
sampler_name,
|
295 |
+
shift,
|
296 |
+
audio_scale,
|
297 |
+
use_un_ip_mask,
|
298 |
+
enable_teacache,
|
299 |
+
teacache_threshold,
|
300 |
+
teacache_offload,
|
301 |
+
num_skip_start_steps,
|
302 |
+
enable_riflex,
|
303 |
+
riflex_k,
|
304 |
+
progress=gr.Progress(track_ ΟΟΟΞ΅=True)
|
305 |
+
):
|
306 |
+
global pipeline, wav2vec_processor, wav2vec_model, config
|
307 |
+
|
308 |
+
progress(0, desc="Starting video generation...")
|
309 |
+
|
310 |
+
if image_path is None: raise gr.Error("Please upload an image")
|
311 |
+
if audio_path is None: raise gr.Error("Please upload an audio file")
|
312 |
+
if not models_ready or pipeline is None: raise gr.Error("Models not initialized. Please restart the space.")
|
313 |
+
|
314 |
+
device = pipeline.device
|
315 |
+
|
316 |
+
if seed_param < 0:
|
317 |
+
seed = random.randint(0, np.iinfo(np.int32).max)
|
318 |
+
else:
|
319 |
+
seed = int(seed_param)
|
320 |
+
|
321 |
+
print(f"π² Using seed: {seed}")
|
322 |
+
|
323 |
+
try:
|
324 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
325 |
+
ref_img_pil = Image.open(image_path).convert("RGB")
|
326 |
+
print(f"πΈ Image loaded: {ref_img_pil.size}")
|
327 |
+
|
328 |
+
progress(0.1, desc="Detecting face...")
|
329 |
+
try:
|
330 |
+
y1, y2, x1, x2, h_, w_ = get_mask_coord(image_path)
|
331 |
+
print("β
Face detection successful")
|
332 |
+
except Exception as e:
|
333 |
+
print(f"β οΈ Face detection failed: {e}, using center crop")
|
334 |
+
h_, w_ = ref_img_pil.size[1], ref_img_pil.size[0]
|
335 |
+
y1, y2 = h_ // 4, 3 * h_ // 4
|
336 |
+
x1, x2 = w_ // 4, 3 * w_ // 4
|
337 |
+
|
338 |
+
progress(0.2, desc="Processing audio...")
|
339 |
+
audio_clip = AudioFileClip(audio_path)
|
340 |
+
audio_features = extract_audio_features(audio_path, wav2vec_processor, wav2vec_model)
|
341 |
+
audio_embeds = audio_features.unsqueeze(0).to(device=device, dtype=config.weight_dtype)
|
342 |
+
|
343 |
+
video_length = int(audio_clip.duration * fps)
|
344 |
+
video_length = (
|
345 |
+
int((video_length - 1) // pipeline.vae.config.temporal_compression_ratio * pipeline.vae.config.temporal_compression_ratio) + 1
|
346 |
+
if video_length != 1 else 1
|
347 |
+
)
|
348 |
+
print(f"π₯ Total video length: {video_length} frames")
|
349 |
+
|
350 |
+
sample_height, sample_width = get_sample_size(ref_img_pil, config.sample_size)
|
351 |
+
print(f"π Sample size: {sample_width}x{sample_height}")
|
352 |
+
|
353 |
+
downratio = math.sqrt(sample_height * sample_width / h_ / w_)
|
354 |
+
coords = (
|
355 |
+
y1 * downratio // 16, y2 * downratio // 16,
|
356 |
+
x1 * downratio // 16, x2 * downratio // 16,
|
357 |
+
sample_height // 16, sample_width // 16,
|
358 |
+
)
|
359 |
+
ip_mask = get_ip_mask(coords).unsqueeze(0)
|
360 |
+
ip_mask = torch.cat([ip_mask]*3).to(device=device, dtype=config.weight_dtype)
|
361 |
+
|
362 |
+
if enable_riflex:
|
363 |
+
latent_frames = (video_length - 1) // pipeline.vae.config.temporal_compression_ratio + 1
|
364 |
+
pipeline.transformer.enable_riflex(k=riflex_k, L_test=latent_frames)
|
365 |
+
|
366 |
+
if enable_teacache:
|
367 |
+
try:
|
368 |
+
coefficients = get_teacache_coefficients(config.model_name)
|
369 |
+
if coefficients:
|
370 |
+
pipeline.transformer.enable_teacache(
|
371 |
+
coefficients, num_inference_steps, teacache_threshold,
|
372 |
+
num_skip_start_steps=num_skip_start_steps,
|
373 |
+
offload=teacache_offload
|
374 |
+
)
|
375 |
+
print("β
TeaCache enabled for this run")
|
376 |
+
except Exception as e:
|
377 |
+
print(f"β οΈ Could not enable TeaCache: {e}")
|
378 |
+
|
379 |
+
init_frames = 0
|
380 |
+
new_sample = None
|
381 |
+
ref_img_for_loop = ref_img_pil
|
382 |
+
total_chunks = math.ceil(video_length / (partial_video_length - overlap_video_length)) if video_length > partial_video_length else 1
|
383 |
+
chunk_num = 0
|
384 |
+
|
385 |
+
while init_frames < video_length:
|
386 |
+
chunk_num += 1
|
387 |
+
progress(0.3 + (0.6 * (chunk_num / total_chunks)), desc=f"Generating chunk {chunk_num}/{total_chunks}...")
|
388 |
+
|
389 |
+
current_partial_length = min(partial_video_length, video_length - init_frames)
|
390 |
+
current_partial_length = (
|
391 |
+
int((current_partial_length - 1) // pipeline.vae.config.temporal_compression_ratio * pipeline.vae.config.temporal_compression_ratio) + 1
|
392 |
+
if current_partial_length > 1 else 1
|
393 |
+
)
|
394 |
+
if current_partial_length <= 0: break
|
395 |
+
|
396 |
+
input_video, input_video_mask, clip_image = get_image_to_video_latent3(
|
397 |
+
ref_img_for_loop, None, video_length=current_partial_length,
|
398 |
+
sample_size=[sample_height, sample_width]
|
399 |
+
)
|
400 |
+
|
401 |
+
audio_start_frame = init_frames * 2
|
402 |
+
audio_end_frame = (init_frames + current_partial_length) * 2
|
403 |
+
|
404 |
+
# Ensure audio embeds are long enough
|
405 |
+
if audio_embeds.shape[1] < audio_end_frame:
|
406 |
+
repeat_times = (audio_end_frame // audio_embeds.shape[1]) + 1
|
407 |
+
audio_embeds = audio_embeds.repeat(1, repeat_times, 1)
|
408 |
+
|
409 |
+
partial_audio_embeds = audio_embeds[:, audio_start_frame:audio_end_frame]
|
410 |
+
|
411 |
+
with torch.no_grad():
|
412 |
+
sample = pipeline(
|
413 |
+
prompt,
|
414 |
+
num_frames=current_partial_length,
|
415 |
+
negative_prompt=negative_prompt,
|
416 |
+
audio_embeds=partial_audio_embeds,
|
417 |
+
audio_scale=audio_scale,
|
418 |
+
ip_mask=ip_mask,
|
419 |
+
use_un_ip_mask=use_un_ip_mask,
|
420 |
+
height=sample_height,
|
421 |
+
width=sample_width,
|
422 |
+
generator=generator,
|
423 |
+
neg_scale=neg_scale,
|
424 |
+
neg_steps=neg_steps,
|
425 |
+
use_dynamic_cfg=use_dynamic_cfg,
|
426 |
+
use_dynamic_acfg=use_dynamic_acfg,
|
427 |
+
guidance_scale=guidance_scale,
|
428 |
+
audio_guidance_scale=audio_guidance_scale,
|
429 |
+
num_inference_steps=num_inference_steps,
|
430 |
+
video=input_video,
|
431 |
+
mask_video=input_video_mask,
|
432 |
+
clip_image=clip_image,
|
433 |
+
shift=shift,
|
434 |
+
).videos
|
435 |
+
|
436 |
+
if new_sample is None:
|
437 |
+
new_sample = sample
|
438 |
+
else:
|
439 |
+
mix_ratio = torch.linspace(0, 1, steps=overlap_video_length, device=device).view(1, 1, -1, 1, 1).to(new_sample.dtype)
|
440 |
+
new_sample[:, :, -overlap_video_length:] = (
|
441 |
+
new_sample[:, :, -overlap_video_length:] * (1 - mix_ratio) +
|
442 |
+
sample[:, :, :overlap_video_length] * mix_ratio
|
443 |
+
)
|
444 |
+
new_sample = torch.cat([new_sample, sample[:, :, overlap_video_length:]], dim=2)
|
445 |
+
|
446 |
+
if new_sample.shape[2] >= video_length:
|
447 |
+
break
|
448 |
+
|
449 |
+
ref_img_for_loop = [
|
450 |
+
Image.fromarray(
|
451 |
+
(new_sample[0, :, i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
|
452 |
+
) for i in range(-overlap_video_length, 0)
|
453 |
+
]
|
454 |
+
|
455 |
+
init_frames += current_partial_length - overlap_video_length
|
456 |
+
|
457 |
+
progress(0.9, desc="Stitching video and audio...")
|
458 |
+
final_sample = new_sample[:, :, :video_length]
|
459 |
+
|
460 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
|
461 |
+
video_path = tmp_file.name
|
462 |
+
with tempfile.NamedTemporaryFile(suffix="_audio.mp4", delete=False) as tmp_file:
|
463 |
+
video_audio_path = tmp_file.name
|
464 |
+
|
465 |
+
save_videos_grid(final_sample, video_path, fps=fps)
|
466 |
+
|
467 |
+
video_clip_final = VideoFileClip(video_path)
|
468 |
+
audio_clip_trimmed = audio_clip.subclip(0, final_sample.shape[2] / fps)
|
469 |
+
final_video = video_clip_final.set_audio(audio_clip_trimmed)
|
470 |
+
final_video.write_videofile(video_audio_path, codec="libx264", audio_codec="aac", threads=4, logger=None)
|
471 |
+
|
472 |
+
video_clip_final.close()
|
473 |
+
audio_clip.close()
|
474 |
+
audio_clip_trimmed.close()
|
475 |
+
final_video.close()
|
476 |
+
|
477 |
+
gc.collect()
|
478 |
+
if torch.cuda.is_available():
|
479 |
+
torch.cuda.empty_cache()
|
480 |
+
torch.cuda.ipc_collect()
|
481 |
+
|
482 |
+
progress(1.0, desc="Generation complete!")
|
483 |
+
return video_audio_path, seed
|
484 |
+
|
485 |
+
except Exception as e:
|
486 |
+
print(f"β Generation error: {str(e)}")
|
487 |
+
import traceback
|
488 |
+
traceback.print_exc()
|
489 |
+
raise gr.Error(f"Generation failed: {str(e)}")
|
490 |
+
|
491 |
+
|
492 |
+
def create_demo():
|
493 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="EchoMimicV3 Demo") as demo:
|
494 |
+
gr.Markdown("""
|
495 |
+
# π EchoMimicV3: Audio-Driven Human Animation
|
496 |
+
|
497 |
+
Transform a portrait photo into a talking video! Upload an image and an audio file to create lifelike, expressive animations. This demo showcases the power of the EchoMimicV3 model.
|
498 |
+
|
499 |
+
**Key Features:**
|
500 |
+
- π― **High-Quality Lip Sync:** Accurate mouth movements that match the input audio.
|
501 |
+
- π¨ **Natural Facial Expressions:** Generates subtle and natural facial emotions.
|
502 |
+
- π΅ **Speech & Singing:** Works with both spoken word and singing.
|
503 |
+
- β‘ **Efficient:** Powered by a compact 1.3B parameter model.
|
504 |
+
""")
|
505 |
+
|
506 |
+
if not models_ready:
|
507 |
+
gr.Warning("Models are still loading. The UI is disabled. Please wait and refresh the page if necessary.")
|
508 |
+
|
509 |
+
with gr.Row():
|
510 |
+
with gr.Column(scale=1):
|
511 |
+
image_input = gr.Image(
|
512 |
+
label="πΈ Upload Portrait Image",
|
513 |
+
type="filepath",
|
514 |
+
sources=["upload"],
|
515 |
+
height=400,
|
516 |
+
info="Use a clear, front-facing portrait photo for best results."
|
517 |
+
)
|
518 |
+
audio_input = gr.Audio(
|
519 |
+
label="π΅ Upload Audio",
|
520 |
+
type="filepath",
|
521 |
+
sources=["upload"],
|
522 |
+
info="Clear speech or singing without background noise works best."
|
523 |
+
)
|
524 |
+
|
525 |
+
with gr.Accordion("π Text Prompts", open=True):
|
526 |
+
prompt = gr.Textbox(
|
527 |
+
label="βοΈ Prompt",
|
528 |
+
value="A person talking naturally with clear expressions.",
|
529 |
+
info="Describe the desired animation. Can influence style and expression."
|
530 |
+
)
|
531 |
+
negative_prompt = gr.Textbox(
|
532 |
+
label="π« Negative Prompt",
|
533 |
+
value="Gesture is bad, unclear. Strange, twisted, bad, blurry hands and fingers.",
|
534 |
+
lines=2,
|
535 |
+
info="Describe what to avoid. Helps prevent artifacts."
|
536 |
+
)
|
537 |
+
|
538 |
+
with gr.Column(scale=1):
|
539 |
+
video_output = gr.Video(
|
540 |
+
label="π₯ Generated Video",
|
541 |
+
interactive=False,
|
542 |
+
height=400
|
543 |
+
)
|
544 |
+
seed_output = gr.Number(
|
545 |
+
label="π² Used Seed",
|
546 |
+
interactive=False,
|
547 |
+
precision=0
|
548 |
+
)
|
549 |
+
|
550 |
+
with gr.Accordion("βοΈ Advanced Settings", open=False):
|
551 |
+
with gr.Row():
|
552 |
+
with gr.Column():
|
553 |
+
gr.Markdown("### Core Generation Parameters")
|
554 |
+
seed_param = gr.Number(label="π² Seed", value=-1, precision=0, info="-1 for random seed.")
|
555 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=5, maximum=50, value=20, step=1, info="More steps can improve quality but take longer. 15-25 is a good range.")
|
556 |
+
fps = gr.Slider(label="Frames Per Second (FPS)", minimum=10, maximum=30, value=25, step=1, info="Controls the smoothness of the output video.")
|
557 |
+
with gr.Column():
|
558 |
+
gr.Markdown("### Classifier-Free Guidance (CFG)")
|
559 |
+
guidance_scale = gr.Slider(label="Text Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=4.5, step=0.1, info="How strongly to follow the text prompt. Recommended: 3.0-6.0.")
|
560 |
+
audio_guidance_scale = gr.Slider(label="Audio Guidance Scale (aCFG)", minimum=1.0, maximum=10.0, value=2.5, step=0.1, info="How strongly to follow the audio for lip sync. Recommended: 2.0-3.0.")
|
561 |
+
use_dynamic_cfg = gr.Checkbox(label="Use Dynamic Text CFG", value=True, info="Gradually adjusts CFG during generation, can improve quality.")
|
562 |
+
use_dynamic_acfg = gr.Checkbox(label="Use Dynamic Audio aCFG", value=True, info="Gradually adjusts aCFG during generation, can improve quality.")
|
563 |
+
|
564 |
+
with gr.Row():
|
565 |
+
with gr.Column():
|
566 |
+
gr.Markdown("### Performance & VRAM (Chunking)")
|
567 |
+
partial_video_length = gr.Slider(label="Partial Video Length (Chunk Size)", minimum=49, maximum=161, value=113, step=16, info="Key for VRAM usage. 24G VRAM: ~113, 16G: ~81, 12G: ~49. Lower values use less memory but may affect consistency.")
|
568 |
+
overlap_video_length = gr.Slider(label="Overlap Length", minimum=4, maximum=16, value=8, step=1, info="How many frames to overlap between chunks for smooth transitions.")
|
569 |
+
with gr.Column():
|
570 |
+
gr.Markdown("### Sampler & Scheduler")
|
571 |
+
sampler_name = gr.Dropdown(label="Sampler", choices=["Flow", "Flow_Unipc", "Flow_DPM++"], value="Flow_DPM++", info="Algorithm for the diffusion process.")
|
572 |
+
shift = gr.Slider(label="Scheduler Shift", minimum=1.0, maximum=10.0, value=5.0, step=0.1, info="Adjusts the noise schedule. Optimal range depends on the sampler.")
|
573 |
+
audio_scale = gr.Slider(label="Audio Scale", minimum=0.5, maximum=2.0, value=1.0, step=0.1, info="Global scale for audio feature influence.")
|
574 |
+
use_un_ip_mask = gr.Checkbox(label="Use Un-IP Mask", value=False, info="Inverts the inpainting mask.")
|
575 |
+
|
576 |
+
with gr.Row():
|
577 |
+
with gr.Column():
|
578 |
+
gr.Markdown("### Negative Guidance (Advanced CFG)")
|
579 |
+
neg_scale = gr.Slider(label="Negative Scale", minimum=1.0, maximum=5.0, value=1.5, step=0.1, info="Strength of negative prompt in early steps.")
|
580 |
+
neg_steps = gr.Slider(label="Negative Steps", minimum=0, maximum=10, value=2, step=1, info="How many initial steps to apply the negative scale.")
|
581 |
+
|
582 |
+
with gr.Accordion("π¬ Experimental Settings", open=False):
|
583 |
+
with gr.Row():
|
584 |
+
with gr.Column():
|
585 |
+
gr.Markdown("### TeaCache (Performance Boost)")
|
586 |
+
enable_teacache = gr.Checkbox(label="Enable TeaCache", value=True)
|
587 |
+
teacache_threshold = gr.Slider(label="TeaCache Threshold", minimum=0.0, maximum=0.2, value=0.1, step=0.01)
|
588 |
+
teacache_offload = gr.Checkbox(label="TeaCache Offload", value=True)
|
589 |
+
with gr.Column():
|
590 |
+
gr.Markdown("### Riflex (Consistency)")
|
591 |
+
enable_riflex = gr.Checkbox(label="Enable Riflex", value=False)
|
592 |
+
riflex_k = gr.Slider(label="Riflex K", minimum=1, maximum=10, value=6, step=1)
|
593 |
+
with gr.Column():
|
594 |
+
gr.Markdown("### Other")
|
595 |
+
num_skip_start_steps = gr.Slider(label="Num Skip Start Steps", minimum=0, maximum=10, value=5, step=1)
|
596 |
+
|
597 |
+
generate_button = gr.Button(
|
598 |
+
"π¬ Generate Video",
|
599 |
+
variant='primary',
|
600 |
+
size="lg",
|
601 |
+
interactive=models_ready
|
602 |
+
)
|
603 |
+
|
604 |
+
all_inputs = [
|
605 |
+
image_input, audio_input, prompt, negative_prompt, seed_param,
|
606 |
+
num_inference_steps, guidance_scale, audio_guidance_scale, fps,
|
607 |
+
partial_video_length, overlap_video_length, neg_scale, neg_steps,
|
608 |
+
use_dynamic_cfg, use_dynamic_acfg, sampler_name, shift, audio_scale,
|
609 |
+
use_un_ip_mask, enable_teacache, teacache_threshold, teacache_offload,
|
610 |
+
num_skip_start_steps, enable_riflex, riflex_k
|
611 |
+
]
|
612 |
+
|
613 |
+
if models_ready:
|
614 |
+
generate_button.click(
|
615 |
+
fn=generate_video,
|
616 |
+
inputs=all_inputs,
|
617 |
+
outputs=[video_output, seed_output]
|
618 |
+
)
|
619 |
+
|
620 |
+
gr.Markdown("---")
|
621 |
+
gr.Markdown("### β¨ Click to Try Examples")
|
622 |
+
|
623 |
+
gr.Examples(
|
624 |
+
examples=[
|
625 |
+
[
|
626 |
+
"examples/demo_ch_woman_04.png",
|
627 |
+
"examples/demo_ch_woman_04.WAV",
|
628 |
+
"A Chinese woman is talking naturally.",
|
629 |
+
"bad gestures, blurry, distorted face",
|
630 |
+
42, 20, 4.5, 2.5, 25, 113, 8, 1.5, 2, True, True, "Flow_DPM++", 5.0, 1.0, False, True, 0.1, True, 5, False, 6
|
631 |
+
],
|
632 |
+
[
|
633 |
+
"examples/guitar_woman_01.png",
|
634 |
+
"examples/guitar_woman_01.WAV",
|
635 |
+
"A woman with glasses is singing and playing the guitar.",
|
636 |
+
"blurry, distorted face, bad hands",
|
637 |
+
123, 25, 5.0, 2.8, 25, 113, 8, 1.5, 2, True, True, "Flow_DPM++", 5.0, 1.0, False, True, 0.1, True, 5, False, 6
|
638 |
+
],
|
639 |
+
],
|
640 |
+
inputs=all_inputs,
|
641 |
+
outputs=[video_output, seed_output],
|
642 |
+
fn=generate_video,
|
643 |
+
cache_examples=True,
|
644 |
+
label=None,
|
645 |
+
)
|
646 |
+
|
647 |
+
gr.Markdown("---")
|
648 |
+
gr.Markdown("""
|
649 |
+
### π How to Use
|
650 |
+
1. **Upload Image:** Choose a clear portrait photo (front-facing works best).
|
651 |
+
2. **Upload Audio:** Add an audio file with clear speech or singing.
|
652 |
+
3. **Adjust Settings (Optional):** Fine-tune parameters in the advanced sections for different results. For memory issues, try lowering the "Partial Video Length".
|
653 |
+
4. **Generate:** Click the button and wait for your talking video!
|
654 |
+
|
655 |
+
**Note:** Generation time depends on settings and audio length. It can take a few minutes.
|
656 |
+
|
657 |
+
This demo is based on the [EchoMimicV3 repository](https://github.com/antgroup/echomimic_v3).
|
658 |
+
""")
|
659 |
+
|
660 |
+
return demo
|
661 |
+
|
662 |
+
if __name__ == "__main__":
|
663 |
+
print("π Starting model initialization...")
|
664 |
+
models_ready = initialize_models()
|
665 |
+
|
666 |
+
demo = create_demo()
|
667 |
+
demo.launch(share=True)
|