import os import spaces import torch import gradio as gr import tempfile import subprocess import sys from pathlib import Path import datetime import math import random import gc import json import numpy as np from PIL import Image from moviepy import * import librosa from omegaconf import OmegaConf from transformers import AutoTokenizer, Wav2Vec2Model, Wav2Vec2Processor from diffusers import FlowMatchEulerDiscreteScheduler from huggingface_hub import hf_hub_download, snapshot_download def setup_repository(): if not os.path.exists("echomimic_v3"): print("🔄 Cloning EchoMimicV3 repository...") subprocess.run([ "git", "clone", "https://github.com/antgroup/echomimic_v3.git" ], check=True) print("✅ Repository cloned successfully") sys.path.insert(0, "echomimic_v3") print("✅ Repository added to Python path") def download_models(): print("📥 Downloading models...") os.makedirs("models", exist_ok=True) try: print("🔄 Downloading base model...") base_model_path = snapshot_download( repo_id="alibaba-pai/Wan2.1-Fun-V1.1-1.3B-InP", local_dir="models/Wan2.1-Fun-V1.1-1.3B-InP", local_dir_use_symlinks=False ) print(f"✅ Base model downloaded to: {base_model_path}") print("🔄 Downloading EchoMimicV3 transformer...") os.makedirs("models/transformer", exist_ok=True) transformer_file = hf_hub_download( repo_id="BadToBest/EchoMimicV3", filename="transformer/diffusion_pytorch_model.safetensors", local_dir="models", local_dir_use_symlinks=False ) print(f"✅ Transformer downloaded to: {transformer_file}") config_file = hf_hub_download( repo_id="BadToBest/EchoMimicV3", filename="transformer/config.json", local_dir="models", local_dir_use_symlinks=False ) print(f"✅ Config downloaded to: {config_file}") print("🔄 Downloading Wav2Vec model...") wav2vec_path = snapshot_download( repo_id="facebook/wav2vec2-base-960h", local_dir="models/wav2vec2-base-960h", local_dir_use_symlinks=False ) print(f"✅ Wav2Vec model downloaded to: {wav2vec_path}") print("✅ All models downloaded successfully!") return True except Exception as e: print(f"❌ Error downloading models: {e}") return False def download_examples(): print("📁 Downloading example files...") os.makedirs("examples", exist_ok=True) try: example_files = [ "datasets/echomimicv3_demos/imgs/demo_ch_woman_04.png", "datasets/echomimicv3_demos/audios/demo_ch_woman_04.WAV", "datasets/echomimicv3_demos/prompts/demo_ch_woman_04.txt", "datasets/echomimicv3_demos/imgs/guitar_woman_01.png", "datasets/echomimicv3_demos/audios/guitar_woman_01.WAV", "datasets/echomimicv3_demos/prompts/guitar_woman_01.txt" ] repo_url = "https://github.com/antgroup/echomimic_v3/raw/main/" for file_path in example_files: try: import urllib.request filename = os.path.basename(file_path) local_path = f"examples/{filename}" if not os.path.exists(local_path): print(f"🔄 Downloading {filename}...") urllib.request.urlretrieve(f"{repo_url}{file_path}", local_path) print(f"✅ Downloaded {filename}") else: print(f"✅ {filename} already exists") except Exception as e: print(f"⚠️ Could not download {filename}: {e}") print("✅ Example files downloaded!") return True except Exception as e: print(f"❌ Error downloading examples: {e}") return False setup_repository() from src.dist import set_multi_gpus_devices from src.wan_vae import AutoencoderKLWan from src.wan_image_encoder import CLIPModel from src.wan_text_encoder import WanT5EncoderModel from src.wan_transformer3d_audio import WanTransformerAudioMask3DModel from src.pipeline_wan_fun_inpaint_audio import WanFunInpaintAudioPipeline from src.utils import filter_kwargs, get_image_to_video_latent3, save_videos_grid from src.fm_solvers import FlowDPMSolverMultistepScheduler from src.fm_solvers_unipc import FlowUniPCMultistepScheduler from src.cache_utils import get_teacache_coefficients from src.face_detect import get_mask_coord class ComprehensiveConfig: def __init__(self): self.ulysses_degree = 1 self.ring_degree = 1 self.fsdp_dit = False self.config_path = "echomimic_v3/config/config.yaml" self.model_name = "models/Wan2.1-Fun-V1.1-1.3B-InP" self.transformer_path = "models/transformer/diffusion_pytorch_model.safetensors" self.wav2vec_model_dir = "models/wav2vec2-base-960h" self.weight_dtype = torch.bfloat16 self.sample_size = [768, 768] self.sampler_name = "Flow_DPM++" self.lora_weight = 1.0 config = ComprehensiveConfig() pipeline = None wav2vec_processor = None wav2vec_model = None def load_wav2vec_models(wav2vec_model_dir): print(f"🔄 Loading Wav2Vec models from {wav2vec_model_dir}...") try: processor = Wav2Vec2Processor.from_pretrained(wav2vec_model_dir) model = Wav2Vec2Model.from_pretrained(wav2vec_model_dir).eval() model.requires_grad_(False) print("✅ Wav2Vec models loaded successfully") return processor, model except Exception as e: print(f"❌ Error loading Wav2Vec models: {e}") raise def extract_audio_features(audio_path, processor, model): try: sr = 16000 audio_segment, sample_rate = librosa.load(audio_path, sr=sr) input_values = processor(audio_segment, sampling_rate=sample_rate, return_tensors="pt").input_values input_values = input_values.to(model.device) with torch.no_grad(): features = model(input_values).last_hidden_state return features.squeeze(0) except Exception as e: print(f"❌ Error extracting audio features: {e}") raise def get_sample_size(image, default_size): width, height = image.size original_area = width * height default_area = default_size[0] * default_size[1] if default_area < original_area: ratio = math.sqrt(original_area / default_area) width = width / ratio // 16 * 16 height = height / ratio // 16 * 16 else: width = width // 16 * 16 height = height // 16 * 16 return int(height), int(width) def get_ip_mask(coords): y1, y2, x1, x2, h, w = coords Y, X = torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij') mask = (Y.unsqueeze(-1) >= y1) & (Y.unsqueeze(-1) < y2) & (X.unsqueeze(-1) >= x1) & (X.unsqueeze(-1) < x2) mask = mask.reshape(-1) return mask.float() def initialize_models(): global pipeline, wav2vec_processor, wav2vec_model, config print("🚀 Initializing EchoMimicV3 models...") try: if not download_models(): raise Exception("Failed to download required models") download_examples() device = set_multi_gpus_devices(config.ulysses_degree, config.ring_degree) print(f"✅ Device set to: {device}") cfg = OmegaConf.load(config.config_path) print(f"✅ Config loaded from {config.config_path}") print("🔄 Loading transformer...") transformer = WanTransformerAudioMask3DModel.from_pretrained( os.path.join(config.model_name, cfg['transformer_additional_kwargs'].get('transformer_subpath', 'transformer')), transformer_additional_kwargs=OmegaConf.to_container(cfg['transformer_additional_kwargs']), torch_dtype=config.weight_dtype, ) if config.transformer_path is not None and os.path.exists(config.transformer_path): print(f"🔄 Loading custom transformer weights from {config.transformer_path}...") from safetensors.torch import load_file state_dict = load_file(config.transformer_path) state_dict = state_dict.get("state_dict", state_dict) missing, unexpected = transformer.load_state_dict(state_dict, strict=False) print(f"✅ Custom transformer weights loaded - Missing: {len(missing)}, Unexpected: {len(unexpected)}") print("🔄 Loading VAE...") vae = AutoencoderKLWan.from_pretrained( os.path.join(config.model_name, cfg['vae_kwargs'].get('vae_subpath', 'vae')), additional_kwargs=OmegaConf.to_container(cfg['vae_kwargs']), ).to(config.weight_dtype) print("✅ VAE loaded") print("🔄 Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained( os.path.join(config.model_name, cfg['text_encoder_kwargs'].get('tokenizer_subpath', 'tokenizer')), ) print("✅ Tokenizer loaded") print("🔄 Loading text encoder...") text_encoder = WanT5EncoderModel.from_pretrained( os.path.join(config.model_name, cfg['text_encoder_kwargs'].get('text_encoder_subpath', 'text_encoder')), additional_kwargs=OmegaConf.to_container(cfg['text_encoder_kwargs']), torch_dtype=config.weight_dtype, ).eval() print("✅ Text encoder loaded") print("🔄 Loading CLIP image encoder...") clip_image_encoder = CLIPModel.from_pretrained( os.path.join(config.model_name, cfg['image_encoder_kwargs'].get('image_encoder_subpath', 'image_encoder')), ).to(config.weight_dtype).eval() print("✅ CLIP image encoder loaded") print("🔄 Loading scheduler...") scheduler_cls_map = { "Flow": FlowMatchEulerDiscreteScheduler, "Flow_Unipc": FlowUniPCMultistepScheduler, "Flow_DPM++": FlowDPMSolverMultistepScheduler, } scheduler_cls = scheduler_cls_map.get(config.sampler_name, FlowDPMSolverMultistepScheduler) scheduler = scheduler_cls(**filter_kwargs(scheduler_cls, OmegaConf.to_container(cfg['scheduler_kwargs']))) print("✅ Scheduler loaded") print("🔄 Creating pipeline...") pipeline = WanFunInpaintAudioPipeline( transformer=transformer, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=scheduler, clip_image_encoder=clip_image_encoder, ) pipeline.to(device=device) if torch.__version__ >= "2.0": print("🚀 Compiling the pipeline with torch.compile()...") pipeline.transformer = torch.compile(pipeline.transformer, mode="reduce-overhead", fullgraph=True) print("✅ Pipeline transformer compiled!") print("✅ Pipeline created and moved to device") print("🔄 Loading Wav2Vec models...") wav2vec_processor, wav2vec_model = load_wav2vec_models(config.wav2vec_model_dir) wav2vec_model.to(device) print("✅ Wav2Vec models loaded") print("🎉 All models initialized successfully!") return True except Exception as e: print(f"❌ Model initialization failed: {str(e)}") import traceback traceback.print_exc() return False @spaces.GPU(duration=120) def generate_video( image_path, audio_path, prompt, negative_prompt, seed_param, num_inference_steps, guidance_scale, audio_guidance_scale, fps, partial_video_length, overlap_video_length, neg_scale, neg_steps, use_dynamic_cfg, use_dynamic_acfg, sampler_name, shift, audio_scale, use_un_ip_mask, enable_teacache, teacache_threshold, teacache_offload, num_skip_start_steps, enable_riflex, riflex_k, progress=gr.Progress(track_tqdm=True) ): global pipeline, wav2vec_processor, wav2vec_model, config progress(0, desc="Starting video generation...") if image_path is None: raise gr.Error("Please upload an image") if audio_path is None: raise gr.Error("Please upload an audio file") if not models_ready or pipeline is None: raise gr.Error("Models not initialized. Please restart the space.") device = pipeline.device if seed_param < 0: seed = random.randint(0, np.iinfo(np.int32).max) else: seed = int(seed_param) print(f"🎲 Using seed: {seed}") try: generator = torch.Generator(device=device).manual_seed(seed) ref_img_pil = Image.open(image_path).convert("RGB") print(f"📸 Image loaded: {ref_img_pil.size}") progress(0.1, desc="Detecting face...") try: y1, y2, x1, x2, h_, w_ = get_mask_coord(image_path) print("✅ Face detection successful") except Exception as e: print(f"⚠️ Face detection failed: {e}, using center crop") h_, w_ = ref_img_pil.size[1], ref_img_pil.size[0] y1, y2 = h_ // 4, 3 * h_ // 4 x1, x2 = w_ // 4, 3 * w_ // 4 progress(0.2, desc="Processing audio...") audio_clip = AudioFileClip(audio_path) audio_features = extract_audio_features(audio_path, wav2vec_processor, wav2vec_model) audio_embeds = audio_features.unsqueeze(0).to(device=device, dtype=config.weight_dtype) progress(0.25, desc="Encoding prompts...") prompt_embeds, negative_prompt_embeds = pipeline.encode_prompt( prompt, device=device, num_images_per_prompt=1, do_classifier_free_guidance=(guidance_scale > 1.0), negative_prompt=negative_prompt ) video_length = int(audio_clip.duration * fps) video_length = ( int((video_length - 1) // pipeline.vae.config.temporal_compression_ratio * pipeline.vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1 ) print(f"🎥 Total video length: {video_length} frames") sample_height, sample_width = get_sample_size(ref_img_pil, config.sample_size) print(f"📐 Sample size: {sample_width}x{sample_height}") downratio = math.sqrt(sample_height * sample_width / h_ / w_) coords = ( y1 * downratio // 16, y2 * downratio // 16, x1 * downratio // 16, x2 * downratio // 16, sample_height // 16, sample_width // 16, ) ip_mask = get_ip_mask(coords).unsqueeze(0) ip_mask = torch.cat([ip_mask]*3).to(device=device, dtype=config.weight_dtype) if enable_riflex: latent_frames = (video_length - 1) // pipeline.vae.config.temporal_compression_ratio + 1 pipeline.transformer.enable_riflex(k=riflex_k, L_test=latent_frames) if enable_teacache: try: coefficients = get_teacache_coefficients(config.model_name) if coefficients: pipeline.transformer.enable_teacache( coefficients, num_inference_steps, teacache_threshold, num_skip_start_steps=num_skip_start_steps, offload=teacache_offload ) print("✅ TeaCache enabled for this run") except Exception as e: print(f"⚠️ Could not enable TeaCache: {e}") init_frames = 0 new_sample = None ref_img_for_loop = ref_img_pil total_chunks = math.ceil(video_length / (partial_video_length - overlap_video_length)) if video_length > partial_video_length else 1 chunk_num = 0 while init_frames < video_length: chunk_num += 1 progress(0.3 + (0.6 * (chunk_num / total_chunks)), desc=f"Generating chunk {chunk_num}/{total_chunks}...") current_partial_length = min(partial_video_length, video_length - init_frames) current_partial_length = ( int((current_partial_length - 1) // pipeline.vae.config.temporal_compression_ratio * pipeline.vae.config.temporal_compression_ratio) + 1 if current_partial_length > 1 else 1 ) if current_partial_length <= 0: break input_video, input_video_mask, clip_image = get_image_to_video_latent3( ref_img_for_loop, None, video_length=current_partial_length, sample_size=[sample_height, sample_width] ) audio_start_frame = init_frames * 2 audio_end_frame = (init_frames + current_partial_length) * 2 if audio_embeds.shape[1] < audio_end_frame: repeat_times = (audio_end_frame // audio_embeds.shape[1]) + 1 audio_embeds = audio_embeds.repeat(1, repeat_times, 1) partial_audio_embeds = audio_embeds[:, audio_start_frame:audio_end_frame] with torch.no_grad(): sample = pipeline( prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_frames=current_partial_length, audio_embeds=partial_audio_embeds, audio_scale=audio_scale, ip_mask=ip_mask, use_un_ip_mask=use_un_ip_mask, height=sample_height, width=sample_width, generator=generator, neg_scale=neg_scale, neg_steps=neg_steps, use_dynamic_cfg=use_dynamic_cfg, use_dynamic_acfg=use_dynamic_acfg, guidance_scale=guidance_scale, audio_guidance_scale=audio_guidance_scale, num_inference_steps=num_inference_steps, video=input_video, mask_video=input_video_mask, clip_image=clip_image, shift=shift, ).videos if new_sample is None: new_sample = sample else: mix_ratio = torch.linspace(0, 1, steps=overlap_video_length, device=device).view(1, 1, -1, 1, 1).to(new_sample.dtype) new_sample[:, :, -overlap_video_length:] = ( new_sample[:, :, -overlap_video_length:] * (1 - mix_ratio) + sample[:, :, :overlap_video_length] * mix_ratio ) new_sample = torch.cat([new_sample, sample[:, :, overlap_video_length:]], dim=2) if new_sample.shape[2] >= video_length: break ref_img_for_loop = [ Image.fromarray( (new_sample[0, :, i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) ) for i in range(-overlap_video_length, 0) ] init_frames += current_partial_length - overlap_video_length progress(0.9, desc="Stitching video and audio...") final_sample = new_sample[:, :, :video_length] with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file: video_path = tmp_file.name with tempfile.NamedTemporaryFile(suffix="_audio.mp4", delete=False) as tmp_file: video_audio_path = tmp_file.name save_videos_grid(final_sample, video_path, fps=fps) video_clip_final = VideoFileClip(video_path) audio_clip_trimmed = audio_clip.subclip(0, final_sample.shape[2] / fps) final_video = video_clip_final.with_audio(audio_clip_trimmed) final_video.write_videofile(video_audio_path, codec="libx264", audio_codec="aac", threads=4, logger=None) video_clip_final.close() audio_clip.close() audio_clip_trimmed.close() final_video.close() gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.ipc_collect() progress(1.0, desc="Generation complete!") return video_audio_path, seed except Exception as e: print(f"❌ Generation error: {str(e)}") import traceback traceback.print_exc() raise gr.Error(f"Generation failed: {str(e)}") def create_demo(): with gr.Blocks(theme=gr.themes.Soft(), title="EchoMimicV3 Demo") as demo: gr.Markdown(""" # 🎭 EchoMimicV3: Audio-Driven Human Animation Transform a portrait photo into a talking video! Upload an image and an audio file to create lifelike, expressive animations. This demo showcases the power of the EchoMimicV3 model. **Key Features:** - 🎯 **High-Quality Lip Sync:** Accurate mouth movements that match the input audio. - 🎨 **Natural Facial Expressions:** Generates subtle and natural facial emotions. - 🎵 **Speech & Singing:** Works with both spoken word and singing. - ⚡ **Efficient:** Powered by a compact 1.3B parameter model. """) if not models_ready: gr.Warning("Models are still loading. The UI is disabled. Please wait and refresh the page if necessary.") with gr.Row(): with gr.Column(scale=1): image_input = gr.Image( label="📸 Upload Portrait Image", type="filepath", sources=["upload"], height=400, ) audio_input = gr.Audio( label="🎵 Upload Audio", type="filepath", sources=["upload"], ) with gr.Accordion("📝 Text Prompts", open=True): prompt = gr.Textbox( label="✍️ Prompt", value="A person talking naturally with clear expressions.", ) negative_prompt = gr.Textbox( label="🚫 Negative Prompt", value="Gesture is bad, unclear. Strange, twisted, bad, blurry hands and fingers.", lines=2, ) with gr.Column(scale=1): video_output = gr.Video( label="🎥 Generated Video", interactive=False, height=400 ) seed_output = gr.Number( label="🎲 Used Seed", interactive=False, precision=0 ) with gr.Accordion("⚙️ Advanced Settings", open=False): with gr.Row(): with gr.Column(): gr.Markdown("### Core Generation Parameters") seed_param = gr.Number(label="🎲 Seed", value=-1, precision=0, info="-1 for random seed.") num_inference_steps = gr.Slider(label="Inference Steps", minimum=5, maximum=50, value=20, step=1, info="More steps can improve quality but take longer. 15-25 is a good range.") fps = gr.Slider(label="Frames Per Second (FPS)", minimum=10, maximum=30, value=25, step=1, info="Controls the smoothness of the output video.") with gr.Column(): gr.Markdown("### Classifier-Free Guidance (CFG)") guidance_scale = gr.Slider(label="Text Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=4.5, step=0.1, info="How strongly to follow the text prompt. Recommended: 3.0-6.0.") audio_guidance_scale = gr.Slider(label="Audio Guidance Scale (aCFG)", minimum=1.0, maximum=10.0, value=2.5, step=0.1, info="How strongly to follow the audio for lip sync. Recommended: 2.0-3.0.") use_dynamic_cfg = gr.Checkbox(label="Use Dynamic Text CFG", value=True, info="Gradually adjusts CFG during generation, can improve quality.") use_dynamic_acfg = gr.Checkbox(label="Use Dynamic Audio aCFG", value=True, info="Gradually adjusts aCFG during generation, can improve quality.") with gr.Row(): with gr.Column(): gr.Markdown("### Performance & VRAM (Chunking)") partial_video_length = gr.Slider(label="Partial Video Length (Chunk Size)", minimum=49, maximum=161, value=113, step=16, info="Key for VRAM usage. 24G VRAM: ~113, 16G: ~81, 12G: ~49. Lower values use less memory but may affect consistency.") overlap_video_length = gr.Slider(label="Overlap Length", minimum=4, maximum=16, value=8, step=1, info="How many frames to overlap between chunks for smooth transitions.") with gr.Column(): gr.Markdown("### Sampler & Scheduler") sampler_name = gr.Dropdown(label="Sampler", choices=["Flow", "Flow_Unipc", "Flow_DPM++"], value="Flow_DPM++", info="Algorithm for the diffusion process.") shift = gr.Slider(label="Scheduler Shift", minimum=1.0, maximum=10.0, value=5.0, step=0.1, info="Adjusts the noise schedule. Optimal range depends on the sampler.") audio_scale = gr.Slider(label="Audio Scale", minimum=0.5, maximum=2.0, value=1.0, step=0.1, info="Global scale for audio feature influence.") use_un_ip_mask = gr.Checkbox(label="Use Un-IP Mask", value=False, info="Inverts the inpainting mask.") with gr.Row(): with gr.Column(): gr.Markdown("### Negative Guidance (Advanced CFG)") neg_scale = gr.Slider(label="Negative Scale", minimum=1.0, maximum=5.0, value=1.5, step=0.1, info="Strength of negative prompt in early steps.") neg_steps = gr.Slider(label="Negative Steps", minimum=0, maximum=10, value=2, step=1, info="How many initial steps to apply the negative scale.") with gr.Accordion("🔬 Experimental Settings", open=False): with gr.Row(): with gr.Column(): gr.Markdown("### TeaCache (Performance Boost)") enable_teacache = gr.Checkbox(label="Enable TeaCache", value=True) teacache_threshold = gr.Slider(label="TeaCache Threshold", minimum=0.0, maximum=0.2, value=0.1, step=0.01) teacache_offload = gr.Checkbox(label="TeaCache Offload", value=True) with gr.Column(): gr.Markdown("### Riflex (Consistency)") enable_riflex = gr.Checkbox(label="Enable Riflex", value=False) riflex_k = gr.Slider(label="Riflex K", minimum=1, maximum=10, value=6, step=1) with gr.Column(): gr.Markdown("### Other") num_skip_start_steps = gr.Slider(label="Num Skip Start Steps", minimum=0, maximum=10, value=5, step=1) generate_button = gr.Button( "🎬 Generate Video", variant='primary', size="lg", interactive=models_ready ) all_inputs = [ image_input, audio_input, prompt, negative_prompt, seed_param, num_inference_steps, guidance_scale, audio_guidance_scale, fps, partial_video_length, overlap_video_length, neg_scale, neg_steps, use_dynamic_cfg, use_dynamic_acfg, sampler_name, shift, audio_scale, use_un_ip_mask, enable_teacache, teacache_threshold, teacache_offload, num_skip_start_steps, enable_riflex, riflex_k ] if models_ready: generate_button.click( fn=generate_video, inputs=all_inputs, outputs=[video_output, seed_output] ) gr.Markdown("---") gr.Markdown("### ✨ Click to Try Examples") gr.Examples( examples=[ [ "examples/demo_ch_woman_04.png", "examples/demo_ch_woman_04.WAV", "A Chinese woman is talking naturally.", "bad gestures, blurry, distorted face", 42, 20, 4.5, 2.5, 25, 113, 8, 1.5, 2, True, True, "Flow_DPM++", 5.0, 1.0, False, True, 0.1, True, 5, False, 6 ], [ "examples/guitar_woman_01.png", "examples/guitar_woman_01.WAV", "A woman with glasses is singing and playing the guitar.", "blurry, distorted face, bad hands", 123, 25, 5.0, 2.8, 25, 113, 8, 1.5, 2, True, True, "Flow_DPM++", 5.0, 1.0, False, True, 0.1, True, 5, False, 6 ], ], inputs=all_inputs, outputs=[video_output, seed_output], fn=generate_video, cache_examples=True, label=None, ) gr.Markdown("---") gr.Markdown(""" ### 📋 How to Use 1. **Upload Image:** Choose a clear portrait photo (front-facing works best). 2. **Upload Audio:** Add an audio file with clear speech or singing. 3. **Adjust Settings (Optional):** Fine-tune parameters in the advanced sections for different results. For memory issues, try lowering the "Partial Video Length". 4. **Generate:** Click the button and wait for your talking video! **Note:** Generation time depends on settings and audio length. It can take a few minutes. This demo is based on the [EchoMimicV3 repository](https://github.com/antgroup/echomimic_v3). """) return demo if __name__ == "__main__": print("🔄 Starting model initialization...") models_ready = initialize_models() demo = create_demo() demo.launch(share=True)