Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,10 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
| 3 |
import os
|
| 4 |
-
import random
|
| 5 |
import base64
|
| 6 |
from PIL import Image
|
| 7 |
import io
|
| 8 |
|
| 9 |
-
|
| 10 |
def resize_image(image_path, max_size=(800, 800), quality=85):
|
| 11 |
with Image.open(image_path) as img:
|
| 12 |
img.thumbnail(max_size, Image.Resampling.LANCZOS)
|
|
@@ -19,28 +17,14 @@ def filepath_to_base64(image_path):
|
|
| 19 |
img_base64 = base64.b64encode(img_bytes)
|
| 20 |
return f"data:image/jpeg;base64,{img_base64.decode('utf-8')}"
|
| 21 |
|
| 22 |
-
# A chave da API 茅 lida de uma vari谩vel de ambiente para maior seguran莽a.
|
| 23 |
api_key = os.getenv('API_KEY')
|
| 24 |
|
| 25 |
-
def call_fuyu_8b_api(image_path, content, temperature=0.2, top_p=0.7, max_tokens=1024
|
| 26 |
print(f"Caminho da imagem recebida: {image_path}")
|
| 27 |
print(f"Conte煤do: {content}")
|
| 28 |
print(f"Temperatura: {temperature}")
|
| 29 |
print(f"Top P: {top_p}")
|
| 30 |
print(f"Max Tokens: {max_tokens}")
|
| 31 |
-
|
| 32 |
-
# Convertendo e validando o seed
|
| 33 |
-
if seed is not None:
|
| 34 |
-
try:
|
| 35 |
-
seed = int(seed)
|
| 36 |
-
print(f"Seed utilizado: {seed}")
|
| 37 |
-
except ValueError:
|
| 38 |
-
# Se o seed fornecido n茫o puder ser convertido para inteiro, retorna erro
|
| 39 |
-
return "Seed must be an integer."
|
| 40 |
-
else:
|
| 41 |
-
# Gera um seed aleat贸rio se nenhum for fornecido
|
| 42 |
-
seed = random.randint(0, 18446744073709551615)
|
| 43 |
-
print(f"Seed gerado aleatoriamente: {seed}")
|
| 44 |
|
| 45 |
image_base64 = filepath_to_base64(image_path)
|
| 46 |
invoke_url = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/9f757064-657f-4c85-abd7-37a7a9b6ee11"
|
|
@@ -60,8 +44,7 @@ def call_fuyu_8b_api(image_path, content, temperature=0.2, top_p=0.7, max_tokens
|
|
| 60 |
"temperature": temperature,
|
| 61 |
"top_p": top_p,
|
| 62 |
"max_tokens": max_tokens,
|
| 63 |
-
"stream": True
|
| 64 |
-
"seed": seed
|
| 65 |
}
|
| 66 |
|
| 67 |
response = requests.post(invoke_url, headers=headers, json=payload, stream=True)
|
|
@@ -81,20 +64,17 @@ def call_fuyu_8b_api(image_path, content, temperature=0.2, top_p=0.7, max_tokens
|
|
| 81 |
response_text += decoded_line.split('"content":"')[1].split('","finish_reason')[0]
|
| 82 |
|
| 83 |
return response_text
|
| 84 |
-
|
| 85 |
content_input = gr.Textbox(lines=2, placeholder="Enter your content here...", label="Content")
|
| 86 |
image_input = gr.Image(type="filepath", label="Upload Image")
|
| 87 |
temperature_input = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.2, label="Temperature")
|
| 88 |
top_p_input = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.7, label="Top P")
|
| 89 |
max_tokens_input = gr.Slider(minimum=1, maximum=1024, step=1, value=1024, label="Max Tokens")
|
| 90 |
-
seed_input = gr.Textbox(label="Seed (optional)")
|
| 91 |
|
| 92 |
-
# Criando a interface Gradio
|
| 93 |
iface = gr.Interface(fn=call_fuyu_8b_api,
|
| 94 |
-
inputs=[image_input, content_input, temperature_input, top_p_input, max_tokens_input
|
| 95 |
outputs="text",
|
| 96 |
title="Fuyu-8B API Explorer",
|
| 97 |
description="Explore the capabilities of Fuyu-8B multi-modal transformer.")
|
| 98 |
|
| 99 |
-
|
| 100 |
-
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
| 3 |
import os
|
|
|
|
| 4 |
import base64
|
| 5 |
from PIL import Image
|
| 6 |
import io
|
| 7 |
|
|
|
|
| 8 |
def resize_image(image_path, max_size=(800, 800), quality=85):
|
| 9 |
with Image.open(image_path) as img:
|
| 10 |
img.thumbnail(max_size, Image.Resampling.LANCZOS)
|
|
|
|
| 17 |
img_base64 = base64.b64encode(img_bytes)
|
| 18 |
return f"data:image/jpeg;base64,{img_base64.decode('utf-8')}"
|
| 19 |
|
|
|
|
| 20 |
api_key = os.getenv('API_KEY')
|
| 21 |
|
| 22 |
+
def call_fuyu_8b_api(image_path, content, temperature=0.2, top_p=0.7, max_tokens=1024):
|
| 23 |
print(f"Caminho da imagem recebida: {image_path}")
|
| 24 |
print(f"Conte煤do: {content}")
|
| 25 |
print(f"Temperatura: {temperature}")
|
| 26 |
print(f"Top P: {top_p}")
|
| 27 |
print(f"Max Tokens: {max_tokens}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
image_base64 = filepath_to_base64(image_path)
|
| 30 |
invoke_url = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/9f757064-657f-4c85-abd7-37a7a9b6ee11"
|
|
|
|
| 44 |
"temperature": temperature,
|
| 45 |
"top_p": top_p,
|
| 46 |
"max_tokens": max_tokens,
|
| 47 |
+
"stream": True
|
|
|
|
| 48 |
}
|
| 49 |
|
| 50 |
response = requests.post(invoke_url, headers=headers, json=payload, stream=True)
|
|
|
|
| 64 |
response_text += decoded_line.split('"content":"')[1].split('","finish_reason')[0]
|
| 65 |
|
| 66 |
return response_text
|
| 67 |
+
|
| 68 |
content_input = gr.Textbox(lines=2, placeholder="Enter your content here...", label="Content")
|
| 69 |
image_input = gr.Image(type="filepath", label="Upload Image")
|
| 70 |
temperature_input = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.2, label="Temperature")
|
| 71 |
top_p_input = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.7, label="Top P")
|
| 72 |
max_tokens_input = gr.Slider(minimum=1, maximum=1024, step=1, value=1024, label="Max Tokens")
|
|
|
|
| 73 |
|
|
|
|
| 74 |
iface = gr.Interface(fn=call_fuyu_8b_api,
|
| 75 |
+
inputs=[image_input, content_input, temperature_input, top_p_input, max_tokens_input],
|
| 76 |
outputs="text",
|
| 77 |
title="Fuyu-8B API Explorer",
|
| 78 |
description="Explore the capabilities of Fuyu-8B multi-modal transformer.")
|
| 79 |
|
| 80 |
+
iface.launch()
|
|
|