Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import Tensor
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import Conv2d
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torch.nn.modules.utils import _pair
|
7 |
+
from typing import Optional
|
8 |
+
from diffusers import StableDiffusionPipeline, DDPMScheduler
|
9 |
+
import diffusers
|
10 |
+
from PIL import Image
|
11 |
+
import gradio as gr
|
12 |
+
import spaces
|
13 |
+
import gc
|
14 |
+
|
15 |
+
def asymmetricConv2DConvForward_circular(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
|
16 |
+
self.paddingX = (
|
17 |
+
self._reversed_padding_repeated_twice[0],
|
18 |
+
self._reversed_padding_repeated_twice[1],
|
19 |
+
0,
|
20 |
+
0
|
21 |
+
)
|
22 |
+
self.paddingY = (
|
23 |
+
0,
|
24 |
+
0,
|
25 |
+
self._reversed_padding_repeated_twice[2],
|
26 |
+
self._reversed_padding_repeated_twice[3]
|
27 |
+
)
|
28 |
+
working = F.pad(input, self.paddingX, mode="circular")
|
29 |
+
working = F.pad(working, self.paddingY, mode="circular")
|
30 |
+
return F.conv2d(working, weight, bias, self.stride, _pair(0), self.dilation, self.groups)
|
31 |
+
|
32 |
+
def make_seamless(model):
|
33 |
+
for module in model.modules():
|
34 |
+
if isinstance(module, torch.nn.Conv2d):
|
35 |
+
if isinstance(module, diffusers.models.lora.LoRACompatibleConv) and module.lora_layer is None:
|
36 |
+
module.lora_layer = lambda *x: 0
|
37 |
+
module._conv_forward = asymmetricConv2DConvForward_circular.__get__(module, Conv2d)
|
38 |
+
|
39 |
+
def disable_seamless(model):
|
40 |
+
for module in model.modules():
|
41 |
+
if isinstance(module, torch.nn.Conv2d):
|
42 |
+
if isinstance(module, diffusers.models.lora.LoRACompatibleConv) and module.lora_layer is None:
|
43 |
+
module.lora_layer = lambda *x: 0
|
44 |
+
module._conv_forward = nn.Conv2d._conv_forward.__get__(module, Conv2d)
|
45 |
+
|
46 |
+
def diffusion_callback(pipe, step_index, timestep, callback_kwargs):
|
47 |
+
if step_index == int(pipe.num_timesteps * 0.8):
|
48 |
+
make_seamless(pipe.unet)
|
49 |
+
make_seamless(pipe.vae)
|
50 |
+
if step_index < int(pipe.num_timesteps * 0.8):
|
51 |
+
callback_kwargs["latents"] = torch.roll(callback_kwargs["latents"], shifts=(64, 64), dims=(2, 3))
|
52 |
+
return callback_kwargs
|
53 |
+
|
54 |
+
print("Loading Pattern Diffusion model...")
|
55 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
56 |
+
"Arrexel/pattern-diffusion",
|
57 |
+
torch_dtype=torch.float16,
|
58 |
+
safety_checker=None,
|
59 |
+
requires_safety_checker=False
|
60 |
+
)
|
61 |
+
pipe.scheduler = DDPMScheduler.from_config(pipe.scheduler.config)
|
62 |
+
|
63 |
+
if torch.cuda.is_available():
|
64 |
+
pipe = pipe.to("cuda")
|
65 |
+
pipe.enable_attention_slicing()
|
66 |
+
pipe.enable_model_cpu_offload()
|
67 |
+
print("Model loaded successfully on GPU with optimizations!")
|
68 |
+
else:
|
69 |
+
print("GPU not available, using CPU")
|
70 |
+
|
71 |
+
@spaces.GPU(duration=40)
|
72 |
+
def generate_pattern(prompt, width=1024, height=1024, num_inference_steps=50, guidance_scale=7.5, seed=None):
|
73 |
+
try:
|
74 |
+
if torch.cuda.is_available():
|
75 |
+
pipe.to("cuda")
|
76 |
+
|
77 |
+
if seed is not None and seed != "":
|
78 |
+
generator = torch.Generator(device=pipe.device).manual_seed(int(seed))
|
79 |
+
else:
|
80 |
+
generator = None
|
81 |
+
|
82 |
+
disable_seamless(pipe.unet)
|
83 |
+
disable_seamless(pipe.vae)
|
84 |
+
|
85 |
+
with torch.autocast("cuda" if torch.cuda.is_available() else "cpu"):
|
86 |
+
output = pipe(
|
87 |
+
prompt=prompt,
|
88 |
+
width=int(width),
|
89 |
+
height=int(height),
|
90 |
+
num_inference_steps=int(num_inference_steps),
|
91 |
+
guidance_scale=guidance_scale,
|
92 |
+
generator=generator,
|
93 |
+
callback_on_step_end=diffusion_callback
|
94 |
+
).images[0]
|
95 |
+
|
96 |
+
return output
|
97 |
+
|
98 |
+
except Exception as e:
|
99 |
+
print(f"Error during generation: {str(e)}")
|
100 |
+
return None
|
101 |
+
finally:
|
102 |
+
if torch.cuda.is_available():
|
103 |
+
torch.cuda.empty_cache()
|
104 |
+
gc.collect()
|
105 |
+
|
106 |
+
def create_interface():
|
107 |
+
with gr.Blocks(title="Pattern Diffusion - Seamless Pattern Generator") as demo:
|
108 |
+
gr.Markdown("""
|
109 |
+
# π¨ Pattern Diffusion - Seamless Pattern Generator
|
110 |
+
|
111 |
+
**Model:** [Arrexel/pattern-diffusion](https://huggingface.co/Arrexel/pattern-diffusion)
|
112 |
+
|
113 |
+
This model specializes in generating patterns that can be repeated without visible seams,
|
114 |
+
ideal for prints, wallpapers, textiles, and surfaces.
|
115 |
+
|
116 |
+
**Strengths:**
|
117 |
+
- Excellent for floral and abstract patterns
|
118 |
+
- Understands foreground and background colors well
|
119 |
+
- Fast and efficient on VRAM
|
120 |
+
|
121 |
+
**Limitations:**
|
122 |
+
- Does not generate coherent text
|
123 |
+
- Difficulty with anatomy of living creatures
|
124 |
+
- Inconsistent geometry in simple geometric patterns
|
125 |
+
""")
|
126 |
+
|
127 |
+
with gr.Row():
|
128 |
+
with gr.Column():
|
129 |
+
prompt = gr.Textbox(
|
130 |
+
label="Prompt",
|
131 |
+
placeholder="Vibrant watercolor floral pattern with pink, purple, and blue flowers against a white background.",
|
132 |
+
lines=3,
|
133 |
+
value="Vibrant watercolor floral pattern with pink, purple, and blue flowers against a white background."
|
134 |
+
)
|
135 |
+
|
136 |
+
with gr.Row():
|
137 |
+
width = gr.Slider(
|
138 |
+
label="Width",
|
139 |
+
minimum=256,
|
140 |
+
maximum=1024,
|
141 |
+
step=256,
|
142 |
+
value=1024
|
143 |
+
)
|
144 |
+
height = gr.Slider(
|
145 |
+
label="Height",
|
146 |
+
minimum=256,
|
147 |
+
maximum=1024,
|
148 |
+
step=256,
|
149 |
+
value=1024
|
150 |
+
)
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
steps = gr.Slider(
|
154 |
+
label="Inference Steps",
|
155 |
+
minimum=20,
|
156 |
+
maximum=100,
|
157 |
+
step=5,
|
158 |
+
value=50
|
159 |
+
)
|
160 |
+
guidance_scale = gr.Slider(
|
161 |
+
label="Guidance Scale",
|
162 |
+
minimum=1.0,
|
163 |
+
maximum=20.0,
|
164 |
+
step=0.5,
|
165 |
+
value=7.5
|
166 |
+
)
|
167 |
+
|
168 |
+
seed = gr.Number(
|
169 |
+
label="Seed (optional, leave empty for random)",
|
170 |
+
precision=0
|
171 |
+
)
|
172 |
+
|
173 |
+
generate_btn = gr.Button("π¨ Generate Pattern", variant="primary", size="lg")
|
174 |
+
|
175 |
+
with gr.Column():
|
176 |
+
output_image = gr.Image(
|
177 |
+
label="Generated Pattern",
|
178 |
+
type="pil",
|
179 |
+
height=400
|
180 |
+
)
|
181 |
+
|
182 |
+
gr.Markdown("## π Example Prompts")
|
183 |
+
examples = [
|
184 |
+
["Vibrant watercolor floral pattern with pink, purple, and blue flowers against a white background."],
|
185 |
+
["Abstract geometric pattern with gold and navy blue triangles on cream background"],
|
186 |
+
["Delicate cherry blossom pattern with soft pink petals on light gray background"],
|
187 |
+
["Art deco pattern with emerald green and gold lines on black background"],
|
188 |
+
["Tropical leaves pattern with various shades of green on white background"],
|
189 |
+
["Vintage damask pattern in burgundy and cream colors"],
|
190 |
+
["Modern minimalist dots pattern in pastel colors"],
|
191 |
+
["Mandala-inspired pattern with intricate details in blue and white"]
|
192 |
+
]
|
193 |
+
|
194 |
+
gr.Examples(
|
195 |
+
examples=examples,
|
196 |
+
inputs=[prompt],
|
197 |
+
label="Click an example to use"
|
198 |
+
)
|
199 |
+
|
200 |
+
generate_btn.click(
|
201 |
+
fn=generate_pattern,
|
202 |
+
inputs=[prompt, width, height, steps, guidance_scale, seed],
|
203 |
+
outputs=[output_image]
|
204 |
+
)
|
205 |
+
|
206 |
+
return demo
|
207 |
+
|
208 |
+
if __name__ == "__main__":
|
209 |
+
demo = create_interface()
|
210 |
+
demo.queue(max_size=20).launch()
|