Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
import spaces
|
6 |
+
from PIL import Image
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
from safetensors.torch import load_file
|
9 |
+
from tqdm import tqdm
|
10 |
+
import gc
|
11 |
+
|
12 |
+
from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline
|
13 |
+
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
|
14 |
+
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
|
15 |
+
|
16 |
+
|
17 |
+
LORA_CONFIG = {
|
18 |
+
"None": {
|
19 |
+
"repo_id": None,
|
20 |
+
"filename": None,
|
21 |
+
"type": "edit",
|
22 |
+
"method": "none",
|
23 |
+
"prompt_template": "{prompt}",
|
24 |
+
"description": "Use the base Qwen-Image-Edit model without any LoRA.",
|
25 |
+
},
|
26 |
+
"InStyle (Style Transfer)": {
|
27 |
+
"repo_id": "peteromallet/Qwen-Image-Edit-InStyle",
|
28 |
+
"filename": "InStyle-0.5.safetensors",
|
29 |
+
"type": "style",
|
30 |
+
"method": "manual_fuse",
|
31 |
+
"prompt_template": "Make an image in this style of {prompt}",
|
32 |
+
"description": "Transfers the style from a reference image to a new image described by the prompt.",
|
33 |
+
},
|
34 |
+
"InScene (In-Scene Editing)": {
|
35 |
+
"repo_id": "flymy-ai/qwen-image-edit-inscene-lora",
|
36 |
+
"filename": "flymy_qwen_image_edit_inscene_lora.safetensors",
|
37 |
+
"type": "edit",
|
38 |
+
"method": "standard",
|
39 |
+
"prompt_template": "{prompt}",
|
40 |
+
"description": "Improves in-scene editing, object positioning, and camera perspective changes.",
|
41 |
+
},
|
42 |
+
"Face Segmentation": {
|
43 |
+
"repo_id": "TsienDragon/qwen-image-edit-lora-face-segmentation",
|
44 |
+
"filename": "pytorch_lora_weights.safetensors",
|
45 |
+
"type": "edit",
|
46 |
+
"method": "standard",
|
47 |
+
"prompt_template": "change the face to face segmentation mask",
|
48 |
+
"description": "Transforms a facial image into a precise segmentation mask.",
|
49 |
+
},
|
50 |
+
"Object Remover": {
|
51 |
+
"repo_id": "valiantcat/Qwen-Image-Edit-Remover-General-LoRA",
|
52 |
+
"filename": "qwen-edit-remover.safetensors",
|
53 |
+
"type": "edit",
|
54 |
+
"method": "standard",
|
55 |
+
"prompt_template": "Remove {prompt}",
|
56 |
+
"description": "Removes objects from an image while maintaining background consistency.",
|
57 |
+
},
|
58 |
+
}
|
59 |
+
|
60 |
+
print("Initializing model...")
|
61 |
+
dtype = torch.bfloat16
|
62 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
63 |
+
|
64 |
+
pipe = QwenImageEditPipeline.from_pretrained(
|
65 |
+
"Qwen/Qwen-Image-Edit",
|
66 |
+
torch_dtype=dtype
|
67 |
+
).to(device)
|
68 |
+
|
69 |
+
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
70 |
+
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
71 |
+
|
72 |
+
original_transformer_state_dict = pipe.transformer.state_dict()
|
73 |
+
print("Base model loaded and ready.")
|
74 |
+
|
75 |
+
def fuse_lora_manual(transformer, lora_state_dict, alpha=1.0):
|
76 |
+
key_mapping = {}
|
77 |
+
for key in lora_state_dict.keys():
|
78 |
+
base_key = key.replace('diffusion_model.', '').rsplit('.lora_', 1)[0]
|
79 |
+
if base_key not in key_mapping:
|
80 |
+
key_mapping[base_key] = {}
|
81 |
+
if 'lora_A' in key:
|
82 |
+
key_mapping[base_key]['down'] = lora_state_dict[key]
|
83 |
+
elif 'lora_B' in key:
|
84 |
+
key_mapping[base_key]['up'] = lora_state_dict[key]
|
85 |
+
|
86 |
+
for name, module in tqdm(transformer.named_modules(), desc="Fusing layers"):
|
87 |
+
if name in key_mapping and isinstance(module, torch.nn.Linear):
|
88 |
+
lora_weights = key_mapping[name]
|
89 |
+
if 'down' in lora_weights and 'up' in lora_weights:
|
90 |
+
device = module.weight.device
|
91 |
+
dtype = module.weight.dtype
|
92 |
+
lora_down = lora_weights['down'].to(device, dtype=dtype)
|
93 |
+
lora_up = lora_weights['up'].to(device, dtype=dtype)
|
94 |
+
merged_delta = lora_up @ lora_down
|
95 |
+
module.weight.data += alpha * merged_delta
|
96 |
+
return transformer
|
97 |
+
|
98 |
+
def load_and_fuse_lora(lora_name):
|
99 |
+
"""Carrega uma LoRA, funde-a ao modelo e retorna o pipeline modificado."""
|
100 |
+
config = LORA_CONFIG[lora_name]
|
101 |
+
|
102 |
+
print("Resetting transformer to original state...")
|
103 |
+
pipe.transformer.load_state_dict(original_transformer_state_dict)
|
104 |
+
|
105 |
+
if config["method"] == "none":
|
106 |
+
print("No LoRA selected. Using base model.")
|
107 |
+
return
|
108 |
+
|
109 |
+
print(f"Loading LoRA: {lora_name}")
|
110 |
+
lora_path = hf_hub_download(repo_id=config["repo_id"], filename=config["filename"])
|
111 |
+
|
112 |
+
if config["method"] == "standard":
|
113 |
+
print("Using standard loading method...")
|
114 |
+
pipe.load_lora_weights(lora_path)
|
115 |
+
print("Fusing LoRA into the model...")
|
116 |
+
pipe.fuse_lora()
|
117 |
+
elif config["method"] == "manual_fuse":
|
118 |
+
print("Using manual fusion method...")
|
119 |
+
lora_state_dict = load_file(lora_path)
|
120 |
+
pipe.transformer = fuse_lora_manual(pipe.transformer, lora_state_dict)
|
121 |
+
|
122 |
+
gc.collect()
|
123 |
+
torch.cuda.empty_cache()
|
124 |
+
print(f"LoRA '{lora_name}' is now active.")
|
125 |
+
|
126 |
+
@spaces.GPU(duration=60)
|
127 |
+
def infer(
|
128 |
+
lora_name,
|
129 |
+
input_image,
|
130 |
+
style_image,
|
131 |
+
prompt,
|
132 |
+
seed,
|
133 |
+
randomize_seed,
|
134 |
+
true_guidance_scale,
|
135 |
+
num_inference_steps,
|
136 |
+
progress=gr.Progress(track_tqdm=True),
|
137 |
+
):
|
138 |
+
if not lora_name:
|
139 |
+
raise gr.Error("Please select a LoRA model.")
|
140 |
+
|
141 |
+
config = LORA_CONFIG[lora_name]
|
142 |
+
|
143 |
+
if config["type"] == "style":
|
144 |
+
if style_image is None:
|
145 |
+
raise gr.Error("Style Transfer LoRA requires a Style Reference Image.")
|
146 |
+
image_for_pipeline = style_image
|
147 |
+
else: # 'edit'
|
148 |
+
if input_image is None:
|
149 |
+
raise gr.Error("This LoRA requires an Input Image.")
|
150 |
+
image_for_pipeline = input_image
|
151 |
+
|
152 |
+
if not prompt and config["prompt_template"] != "change the face to face segmentation mask":
|
153 |
+
raise gr.Error("A text prompt is required for this LoRA.")
|
154 |
+
|
155 |
+
load_and_fuse_lora(lora_name)
|
156 |
+
|
157 |
+
final_prompt = config["prompt_template"].format(prompt=prompt)
|
158 |
+
|
159 |
+
if randomize_seed:
|
160 |
+
seed = random.randint(0, np.iinfo(np.int32).max)
|
161 |
+
generator = torch.Generator(device=device).manual_seed(int(seed))
|
162 |
+
|
163 |
+
print("--- Running Inference ---")
|
164 |
+
print(f"LoRA: {lora_name}")
|
165 |
+
print(f"Prompt: {final_prompt}")
|
166 |
+
print(f"Seed: {seed}, Steps: {num_inference_steps}, CFG: {true_guidance_scale}")
|
167 |
+
|
168 |
+
with torch.inference_mode():
|
169 |
+
result_image = pipe(
|
170 |
+
image=image_for_pipeline,
|
171 |
+
prompt=final_prompt,
|
172 |
+
negative_prompt=" ",
|
173 |
+
num_inference_steps=int(num_inference_steps),
|
174 |
+
generator=generator,
|
175 |
+
true_cfg_scale=true_guidance_scale,
|
176 |
+
).images[0]
|
177 |
+
|
178 |
+
pipe.unfuse_lora()
|
179 |
+
gc.collect()
|
180 |
+
torch.cuda.empty_cache()
|
181 |
+
|
182 |
+
return result_image, seed
|
183 |
+
|
184 |
+
def on_lora_change(lora_name):
|
185 |
+
config = LORA_CONFIG[lora_name]
|
186 |
+
is_style_lora = config["type"] == "style"
|
187 |
+
return {
|
188 |
+
lora_description: gr.Markdown(visible=True, value=f"**Description:** {config['description']}"),
|
189 |
+
input_image_box: gr.Image(visible=not is_style_lora),
|
190 |
+
style_image_box: gr.Image(visible=is_style_lora),
|
191 |
+
prompt_box: gr.Textbox(visible=(config["prompt_template"] != "change the face to face segmentation mask"))
|
192 |
+
}
|
193 |
+
|
194 |
+
with gr.Blocks(css="#col-container { margin: 0 auto; max-width: 1024px; }") as demo:
|
195 |
+
with gr.Column(elem_id="col-container"):
|
196 |
+
gr.HTML('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Logo" style="width: 400px; margin: 0 auto; display: block;">')
|
197 |
+
gr.Markdown("<h2 style='text-align: center;'>Qwen-Image-Edit Multi-LoRA Playground</h2>")
|
198 |
+
|
199 |
+
with gr.Row():
|
200 |
+
with gr.Column(scale=1):
|
201 |
+
lora_selector = gr.Dropdown(
|
202 |
+
label="Select LoRA Model",
|
203 |
+
choices=list(LORA_CONFIG.keys()),
|
204 |
+
value="InStyle (Style Transfer)"
|
205 |
+
)
|
206 |
+
lora_description = gr.Markdown(visible=False)
|
207 |
+
|
208 |
+
input_image_box = gr.Image(label="Input Image", type="pil", visible=False)
|
209 |
+
style_image_box = gr.Image(label="Style Reference Image", type="pil", visible=True)
|
210 |
+
|
211 |
+
prompt_box = gr.Textbox(label="Prompt", placeholder="Describe the content or object to remove...")
|
212 |
+
|
213 |
+
run_button = gr.Button("Generate!", variant="primary")
|
214 |
+
|
215 |
+
with gr.Column(scale=1):
|
216 |
+
result_image = gr.Image(label="Result", type="pil")
|
217 |
+
used_seed = gr.Number(label="Used Seed", interactive=False)
|
218 |
+
|
219 |
+
with gr.Accordion("Advanced Settings", open=False):
|
220 |
+
seed_slider = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, value=42)
|
221 |
+
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
|
222 |
+
cfg_slider = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, step=0.1, value=4.0)
|
223 |
+
steps_slider = gr.Slider(label="Inference Steps", minimum=10, maximum=50, step=1, value=25)
|
224 |
+
|
225 |
+
lora_selector.change(
|
226 |
+
fn=on_lora_change,
|
227 |
+
inputs=lora_selector,
|
228 |
+
outputs=[lora_description, input_image_box, style_image_box, prompt_box]
|
229 |
+
).then(
|
230 |
+
None,
|
231 |
+
lora_selector,
|
232 |
+
[lora_description, input_image_box, style_image_box, prompt_box],
|
233 |
+
_js="() => { document.querySelector('#lora_selector select').dispatchEvent(new Event('change')) }"
|
234 |
+
)
|
235 |
+
|
236 |
+
run_button.click(
|
237 |
+
fn=infer,
|
238 |
+
inputs=[
|
239 |
+
lora_selector,
|
240 |
+
input_image_box, style_image_box,
|
241 |
+
prompt_box,
|
242 |
+
seed_slider, randomize_seed_checkbox,
|
243 |
+
cfg_slider, steps_slider
|
244 |
+
],
|
245 |
+
outputs=[result_image, used_seed]
|
246 |
+
)
|
247 |
+
|
248 |
+
if __name__ == "__main__":
|
249 |
+
demo.launch()
|