File size: 2,406 Bytes
c1d5b6a 7382a79 c1d5b6a 7382a79 c1d5b6a 7382a79 58bd6cd c1d5b6a bcc7fa5 7382a79 bcc7fa5 7382a79 c1d5b6a bcc7fa5 c1d5b6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import os
import gradio as gr
import requests
import base64
# Get API key from environment variable
api_key = os.environ.get("NVCF_API_KEY")
if not api_key:
raise ValueError("Please set the NVCF_API_KEY environment variable.")
# API details
invoke_url = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/89848fb8-549f-41bb-88cb-95d6597044a4"
fetch_url_format = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/"
headers = {
"Authorization": f"Bearer {api_key}",
"Accept": "application/json",
}
# Function to generate image using the API
def generate_image(prompt, negative_prompt, sampler, seed, guidance_scale, inference_steps):
payload = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"sampler": sampler,
"seed": seed,
"guidance_scale": guidance_scale,
"inference_steps": inference_steps
}
session = requests.Session()
response = session.post(invoke_url, headers=headers, json=payload)
while response.status_code == 202:
request_id = response.headers.get("NVCF-REQID")
fetch_url = fetch_url_format + request_id
response = session.get(fetch_url, headers=headers)
response.raise_for_status()
response_body = response.json()
# Print the API response for debugging
print("API Response:", response_body)
# Decode the base64-encoded image data
b64_image_data = response_body.get("b64_json")
if b64_image_data is None:
return "Error: API response does not contain 'b64_json' key."
image_data = base64.b64decode(b64_image_data)
# Since Gradio's Image component can accept a PIL Image, convert the binary data to a PIL Image
image = Image.open(BytesIO(image_data))
return image
# Create Gradio interface
iface = gr.Interface(
fn=generate_image,
inputs=[
gr.Textbox(label="Prompt", placeholder="Describe the image you want to generate"),
gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image"),
gr.Dropdown(label="Sampler", choices=["DPM", "DDPM", "PLMS"], value="DPM"),
gr.Number(label="Seed", value=0),
gr.Slider(label="Guidance Scale", minimum=0, maximum=20, value=5),
gr.Slider(label="Inference Steps", minimum=1, maximum=50, value=25)
],
outputs=gr.Image(label="Generated Image"),
)
# Launch the Gradio app
iface.launch() |