import os import gradio as gr import requests import base64 from io import BytesIO from PIL import Image import random # Get API key from environment variable api_key = os.environ.get("NVCF_API_KEY") if not api_key: raise ValueError("Please set the NVCF_API_KEY environment variable.") # API details invoke_url = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/89848fb8-549f-41bb-88cb-95d6597044a4" fetch_url_format = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/" headers = { "Authorization": f"Bearer {api_key}", "Accept": "application/json", } # Function to generate image using the API def generate_image(prompt, negative_prompt, sampler, seed, guidance_scale, inference_steps): # Validate and adjust seed value if seed is None or seed <= 0 or seed > 4294967296: seed = random.randint(1, 4294967296) payload = { "prompt": prompt, "negative_prompt": negative_prompt, "sampler": sampler, "seed": seed, "guidance_scale": guidance_scale, "inference_steps": inference_steps } print(payload) session = requests.Session() response = session.post(invoke_url, headers=headers, json=payload) while response.status_code == 202: request_id = response.headers.get("NVCF-REQID") fetch_url = fetch_url_format + request_id response = session.get(fetch_url, headers=headers) response.raise_for_status() response_body = response.json() # Print the API response for debugging print("API Response:", response_body) # Decode the base64-encoded image data b64_image_data = response_body.get("b64_json") if b64_image_data is None: return "Error: API response does not contain 'b64_json' key." image_data = base64.b64decode(b64_image_data) # Convert the binary data to a PIL Image image = Image.open(BytesIO(image_data)) return image # Create Gradio interface iface = gr.Interface( fn=generate_image, inputs=[ gr.Textbox(label="Prompt", placeholder="Describe the image you want to generate"), gr.Textbox( label="Negative Prompt", placeholder="What should not be in the image", value="(worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art:1.4), (watermark, signature, text font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), morbid, ugly, asymmetrical, mutated malformed, mutilated, poorly lit, bad shadow, draft, cropped, out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, (airbrushed, cartoon, anime, semi-realistic, cgi, render, blender, digital art, manga, amateur:1.3), (3D ,3D Game, 3D Game Scene, 3D Character:1.1), (bad hands, bad anatomy, bad body, bad face, bad teeth, bad arms, bad legs, deformities:1.3)" ), gr.Dropdown(label="Sampler", choices=["DPM", "EulerA", "LMS", "DDIM"], value="DDIM"), gr.Number(label="Seed", value=0, step=1), gr.Slider(label="Guidance Scale", minimum=1, maximum=9, value=5, step=1), gr.Slider(label="Inference Steps", minimum=5, maximum=100, value=35, step=1) ], outputs=gr.Image(label="Generated Image"), description = """
This Gradio app harnesses the power of Stable Diffusion XL image generation capabilities to bring your creative visions to life. Using NVIDIA NGC. Simply provide a text prompt describing the image you desire, and let the AI do its magic!
How to Use:
This service is powered by NVIDIA NGC and is completely free to use.
Created by: @artificialguybr (Twitter)
Explore more: artificialguy.com
""" ) # Launch the Gradio app iface.launch()