Surya-OCR / app.py
artificialguybr's picture
Update app.py
557d222 verified
raw
history blame
3.21 kB
import gradio as gr
import json
from PIL import Image
from surya.ocr import run_ocr
from surya.detection import batch_detection
from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
from surya.postprocessing.heatmap import draw_polys_on_image
# Load models and processors
det_model, det_processor = load_det_model(), load_det_processor()
rec_model, rec_processor = load_rec_model(), load_rec_processor()
# Create a dictionary to map language names to codes
with open("languages.json", "r") as file:
languages = json.load(file)
language_dict = {name: code for name, code in languages.items()}
# Use the language names for the dropdown choices
language_options = list(language_dict.keys())
def ocr_function(img, lang_name):
print(f"OCR Function Called with lang_name: {lang_name}") # Debug print
# Get the language code from the dictionary
lang_code = language_dict[lang_name]
print(f"Language Code: {lang_code}") # Debug print
predictions = run_ocr([img], [lang_code], det_model, det_processor, rec_model, rec_processor)
print(f"Predictions: {predictions}") # Debug print
if predictions:
img_with_text = draw_polys_on_image(predictions[0]["polys"], img)
return img_with_text, predictions[0]["text"]
else:
return img, "No text detected"
def text_line_detection_function(img):
preds = batch_detection([img], det_model, det_processor)[0]
img_with_lines = draw_polys_on_image(preds["polygons"], img)
return img_with_lines, preds
with gr.Blocks() as app:
gr.Markdown("# Surya OCR and Text Line Detection")
with gr.Tab("OCR"):
with gr.Column():
ocr_input_image = gr.Image(label="Input Image for OCR", type="pil")
ocr_language_selector = gr.Dropdown(label="Select Language for OCR", choices=language_options, value="English")
ocr_run_button = gr.Button("Run OCR")
with gr.Column():
ocr_output_image = gr.Image(label="OCR Output Image", type="pil", interactive=False)
ocr_text_output = gr.TextArea(label="Recognized Text")
# Pass the input image and the language name to the ocr_function
ocr_run_button.click(fn=ocr_function, inputs=[ocr_input_image, ocr_language_selector], outputs=[ocr_output_image, ocr_text_output])
with gr.Tab("Text Line Detection"):
with gr.Column():
detection_input_image = gr.Image(label="Input Image for Detection", type="pil")
detection_run_button = gr.Button("Run Text Line Detection")
with gr.Column():
detection_output_image = gr.Image(label="Detection Output Image", type="pil", interactive=False)
detection_json_output = gr.JSON(label="Detection JSON Output")
# Pass the input image to the text_line_detection_function
detection_run_button.click(fn=text_line_detection_function, inputs=detection_input_image, outputs=[detection_output_image, detection_json_output])
if __name__ == "__main__":
app.launch()