import gradio as gr import json from PIL import Image from surya.ocr import run_ocr from surya.detection import batch_detection from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor from surya.model.recognition.model import load_model as load_rec_model from surya.model.recognition.processor import load_processor as load_rec_processor from surya.postprocessing.heatmap import draw_polys_on_image # Load models and processors det_model, det_processor = load_det_model(), load_det_processor() rec_model, rec_processor = load_rec_model(), load_rec_processor() # Assuming languages.json maps language codes to names, but we'll use codes directly for dropdown with open("languages.json", "r") as file: languages = json.load(file) language_options = list(languages.keys()) # Use codes directly def ocr_function(img, lang_code): predictions = run_ocr([img], [lang_code], det_model, det_processor, rec_model, rec_processor) # Assuming predictions is a list of dictionaries, one per image if predictions: img_with_text = draw_polys_on_image(predictions[0]["polys"], img) return img_with_text, predictions[0] else: return img, {"error": "No text detected"} def text_line_detection_function(img): preds = batch_inference([img], det_model, det_processor)[0] img_with_lines = draw_polys_on_image(preds["polygons"], img) return img_with_lines, preds with gr.Blocks() as app: gr.Markdown("# Surya OCR e Detecção de Linhas de Texto") with gr.Tab("OCR"): with gr.Column(): ocr_input_image = gr.Image(label="Input Image for OCR", type="pil") ocr_language_selector = gr.Dropdown(label="Select Language for OCR", choices=language_options, value="en") ocr_run_button = gr.Button("Run OCR") with gr.Column(): ocr_output_image = gr.Image(label="OCR Output Image", type="pil", interactive=False) ocr_text_output = gr.TextArea(label="Recognized Text") ocr_run_button.click(fn=ocr_function, inputs=[ocr_input_image, ocr_language_selector], outputs=[ocr_output_image, ocr_text_output]) with gr.Tab("Detecção de Linhas de Texto"): with gr.Column(): detection_input_image = gr.Image(label="Imagem de Entrada para Detecção", type="pil") detection_run_button = gr.Button("Executar Detecção de Linhas de Texto") with gr.Column(): detection_output_image = gr.Image(label="Imagem de Saída da Detecção", type="pil", interactive=False) detection_json_output = gr.JSON(label="Saída JSON da Detecção") detection_run_button.click(fn=text_line_detection_function, inputs=detection_input_image, outputs=[detection_output_image, detection_json_output]) if __name__ == "__main__": app.launch()