Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import yt_dlp
|
| 4 |
+
import os
|
| 5 |
+
import subprocess
|
| 6 |
+
import json
|
| 7 |
+
from threading import Thread
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 9 |
+
import spaces
|
| 10 |
+
import moviepy.editor as mp
|
| 11 |
+
import time
|
| 12 |
+
import langdetect
|
| 13 |
+
|
| 14 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 15 |
+
print("Starting the program...")
|
| 16 |
+
|
| 17 |
+
model_path = "internlm/internlm2_5-7b-chat"
|
| 18 |
+
print(f"Loading model {model_path}...")
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 20 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).cuda()
|
| 21 |
+
model = model.eval()
|
| 22 |
+
print("Model successfully loaded.")
|
| 23 |
+
|
| 24 |
+
def download_youtube_audio(url, output_path):
|
| 25 |
+
print(f"Downloading audio from YouTube: {url}")
|
| 26 |
+
ydl_opts = {
|
| 27 |
+
'format': 'bestaudio/best',
|
| 28 |
+
'postprocessors': [{
|
| 29 |
+
'key': 'FFmpegExtractAudio',
|
| 30 |
+
'preferredcodec': 'wav',
|
| 31 |
+
}],
|
| 32 |
+
'outtmpl': output_path
|
| 33 |
+
}
|
| 34 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 35 |
+
ydl.download([url])
|
| 36 |
+
|
| 37 |
+
# Check if the file was renamed to .wav.wav
|
| 38 |
+
if os.path.exists(output_path + ".wav"):
|
| 39 |
+
os.rename(output_path + ".wav", output_path)
|
| 40 |
+
|
| 41 |
+
if os.path.exists(output_path):
|
| 42 |
+
print(f"Audio download completed. File saved at: {output_path}")
|
| 43 |
+
print(f"File size: {os.path.getsize(output_path)} bytes")
|
| 44 |
+
else:
|
| 45 |
+
print(f"Error: File {output_path} not found after download.")
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
@spaces.GPU(duration=60)
|
| 49 |
+
def transcribe_audio(file_path):
|
| 50 |
+
print(f"Starting transcription of file: {file_path}")
|
| 51 |
+
if file_path.endswith(('.mp4', '.avi', '.mov', '.flv')):
|
| 52 |
+
print("Video file detected. Extracting audio...")
|
| 53 |
+
try:
|
| 54 |
+
video = mp.VideoFileClip(file_path)
|
| 55 |
+
audio_path = "temp_audio.wav"
|
| 56 |
+
video.audio.write_audiofile(audio_path)
|
| 57 |
+
file_path = audio_path
|
| 58 |
+
except Exception as e:
|
| 59 |
+
print(f"Error extracting audio from video: {e}")
|
| 60 |
+
raise
|
| 61 |
+
print(f"Does the file exist? {os.path.exists(file_path)}")
|
| 62 |
+
print(f"File size: {os.path.getsize(file_path) if os.path.exists(file_path) else 'N/A'} bytes")
|
| 63 |
+
output_file = "output.json"
|
| 64 |
+
command = [
|
| 65 |
+
"insanely-fast-whisper",
|
| 66 |
+
"--file-name", file_path,
|
| 67 |
+
"--device-id", "0",
|
| 68 |
+
"--model-name", "openai/whisper-large-v3",
|
| 69 |
+
"--task", "transcribe",
|
| 70 |
+
"--timestamp", "chunk",
|
| 71 |
+
"--transcript-path", output_file
|
| 72 |
+
]
|
| 73 |
+
print(f"Executing command: {' '.join(command)}")
|
| 74 |
+
try:
|
| 75 |
+
result = subprocess.run(command, check=True, capture_output=True, text=True)
|
| 76 |
+
print(f"Standard output: {result.stdout}")
|
| 77 |
+
print(f"Error output: {result.stderr}")
|
| 78 |
+
except subprocess.CalledProcessError as e:
|
| 79 |
+
print(f"Error running insanely-fast-whisper: {e}")
|
| 80 |
+
print(f"Standard output: {e.stdout}")
|
| 81 |
+
print(f"Error output: {e.stderr}")
|
| 82 |
+
raise
|
| 83 |
+
print(f"Reading transcription file: {output_file}")
|
| 84 |
+
try:
|
| 85 |
+
with open(output_file, "r") as f:
|
| 86 |
+
transcription = json.load(f)
|
| 87 |
+
except json.JSONDecodeError as e:
|
| 88 |
+
print(f"Error decoding JSON: {e}")
|
| 89 |
+
print(f"File content: {open(output_file, 'r').read()}")
|
| 90 |
+
raise
|
| 91 |
+
if "text" in transcription:
|
| 92 |
+
result = transcription["text"]
|
| 93 |
+
else:
|
| 94 |
+
result = " ".join([chunk["text"] for chunk in transcription.get("chunks", [])])
|
| 95 |
+
print("Transcription completed.")
|
| 96 |
+
if file_path.startswith("temp_audio"):
|
| 97 |
+
os.remove(file_path)
|
| 98 |
+
return result
|
| 99 |
+
|
| 100 |
+
@spaces.GPU(duration=60)
|
| 101 |
+
def generate_summary_stream(transcription):
|
| 102 |
+
print("Starting summary generation...")
|
| 103 |
+
print(f"Transcription length: {len(transcription)} characters")
|
| 104 |
+
|
| 105 |
+
detected_language = langdetect.detect(transcription)
|
| 106 |
+
|
| 107 |
+
prompt = f"""Summarize the following video transcription in 150-300 words.
|
| 108 |
+
The summary should be in the same language as the transcription, which is detected as {detected_language}.
|
| 109 |
+
Please ensure that the summary captures the main points and key ideas of the transcription:
|
| 110 |
+
|
| 111 |
+
{transcription[:30000]}..."""
|
| 112 |
+
|
| 113 |
+
response, history = model.chat(tokenizer, prompt, history=[])
|
| 114 |
+
print(f"Final summary generated: {response[:100]}...")
|
| 115 |
+
print("Summary generation completed.")
|
| 116 |
+
return response
|
| 117 |
+
|
| 118 |
+
def process_youtube(url):
|
| 119 |
+
if not url:
|
| 120 |
+
print("YouTube URL not provided.")
|
| 121 |
+
return "Please enter a YouTube URL.", None
|
| 122 |
+
print(f"Processing YouTube URL: {url}")
|
| 123 |
+
audio_file = "youtube_audio.wav"
|
| 124 |
+
try:
|
| 125 |
+
download_youtube_audio(url, audio_file)
|
| 126 |
+
# Check if the file was renamed to .wav.wav
|
| 127 |
+
if os.path.exists(audio_file + ".wav"):
|
| 128 |
+
audio_file = audio_file + ".wav"
|
| 129 |
+
if not os.path.exists(audio_file):
|
| 130 |
+
raise FileNotFoundError(f"File {audio_file} does not exist after download.")
|
| 131 |
+
print(f"Audio file found: {audio_file}")
|
| 132 |
+
print("Starting transcription...")
|
| 133 |
+
transcription = transcribe_audio(audio_file)
|
| 134 |
+
print(f"Transcription completed. Length: {len(transcription)} characters")
|
| 135 |
+
return transcription, None
|
| 136 |
+
except Exception as e:
|
| 137 |
+
print(f"Error processing YouTube: {e}")
|
| 138 |
+
return f"Processing error: {str(e)}", None
|
| 139 |
+
finally:
|
| 140 |
+
if os.path.exists(audio_file):
|
| 141 |
+
os.remove(audio_file)
|
| 142 |
+
print(f"Directory content after processing: {os.listdir('.')}")
|
| 143 |
+
|
| 144 |
+
def process_uploaded_video(video_path):
|
| 145 |
+
print(f"Processing uploaded video: {video_path}")
|
| 146 |
+
try:
|
| 147 |
+
print("Starting transcription...")
|
| 148 |
+
transcription = transcribe_audio(video_path)
|
| 149 |
+
print(f"Transcription completed. Length: {len(transcription)} characters")
|
| 150 |
+
return transcription, None
|
| 151 |
+
except Exception as e:
|
| 152 |
+
print(f"Error processing video: {e}")
|
| 153 |
+
return f"Processing error: {str(e)}", None
|
| 154 |
+
|
| 155 |
+
print("Setting up Gradio interface...")
|
| 156 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 157 |
+
gr.Markdown(
|
| 158 |
+
"""
|
| 159 |
+
# 🎥 Video Transcription and Smart Summary
|
| 160 |
+
|
| 161 |
+
Upload a video or provide a YouTube link to get a transcription and AI-generated summary.
|
| 162 |
+
"""
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
with gr.Tabs():
|
| 166 |
+
with gr.TabItem("📤 Video Upload"):
|
| 167 |
+
video_input = gr.Video(label="Drag and drop or click to upload")
|
| 168 |
+
video_button = gr.Button("🚀 Process Video", variant="primary")
|
| 169 |
+
|
| 170 |
+
with gr.TabItem("🔗 YouTube Link"):
|
| 171 |
+
url_input = gr.Textbox(label="Paste YouTube URL here", placeholder="https://www.youtube.com/watch?v=...")
|
| 172 |
+
url_button = gr.Button("🚀 Process URL", variant="primary")
|
| 173 |
+
|
| 174 |
+
with gr.Row():
|
| 175 |
+
with gr.Column():
|
| 176 |
+
transcription_output = gr.Textbox(label="📝 Transcription", lines=10, show_copy_button=True)
|
| 177 |
+
with gr.Column():
|
| 178 |
+
summary_output = gr.Textbox(label="📊 Summary", lines=10, show_copy_button=True)
|
| 179 |
+
|
| 180 |
+
summary_button = gr.Button("📝 Generate Summary", variant="secondary")
|
| 181 |
+
|
| 182 |
+
gr.Markdown(
|
| 183 |
+
"""
|
| 184 |
+
### How to use:
|
| 185 |
+
1. Upload a video or paste a YouTube link.
|
| 186 |
+
2. Click 'Process' to get the transcription.
|
| 187 |
+
3. Click 'Generate Summary' to get a summary of the content.
|
| 188 |
+
|
| 189 |
+
*Note: Processing may take a few minutes depending on the video length.*
|
| 190 |
+
"""
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
def process_video_and_update(video):
|
| 194 |
+
if video is None:
|
| 195 |
+
return "No video uploaded.", "Please upload a video."
|
| 196 |
+
print(f"Video received: {video}")
|
| 197 |
+
transcription, _ = process_uploaded_video(video)
|
| 198 |
+
print(f"Returned transcription: {transcription[:100] if transcription else 'No transcription generated'}...")
|
| 199 |
+
return transcription or "Transcription error", ""
|
| 200 |
+
|
| 201 |
+
video_button.click(process_video_and_update, inputs=[video_input], outputs=[transcription_output, summary_output])
|
| 202 |
+
url_button.click(process_youtube, inputs=[url_input], outputs=[transcription_output, summary_output])
|
| 203 |
+
summary_button.click(generate_summary_stream, inputs=[transcription_output], outputs=[summary_output])
|
| 204 |
+
|
| 205 |
+
print("Launching Gradio interface...")
|
| 206 |
+
demo.launch()
|