Spaces:
Sleeping
Sleeping
File size: 7,429 Bytes
62bbce5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import os
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import pickle
import re
import gradio as gr
from transformers import DebertaV2Model, DebertaV2Tokenizer
# ==========================
# Configuration
# ==========================
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
MAX_LENGTH = 256
MODELS_DIR = './models/'
CAT_ENCODER_PATH = os.path.join(MODELS_DIR, 'cat_encoder.pkl')
MISC_ENCODER_PATH = os.path.join(MODELS_DIR, 'misc_encoder.pkl')
FEATURE_COLS_PATH = os.path.join(MODELS_DIR, 'feature_cols.pkl')
DEFAULT_MODEL = 'map_2025_best_model_fold7.pt'
# ==========================
# Feature Extraction
# ==========================
def extract_math_features(text):
if not isinstance(text, str):
return {
'frac_count': 0, 'number_count': 0, 'operator_count': 0,
'decimal_count': 0, 'question_mark': 0, 'math_keyword_count': 0
}
features = {
'frac_count': len(re.findall(r'FRAC_\d+_\d+|\\frac', text)),
'number_count': len(re.findall(r'\b\d+\b', text)),
'operator_count': len(re.findall(r'[\+\-\*\/\=]', text)),
'decimal_count': len(re.findall(r'\d+\.\d+', text)),
'question_mark': int('?' in text),
'math_keyword_count': len(re.findall(r'solve|calculate|equation|fraction|decimal', text.lower()))
}
return features
def create_features(df):
for col in ['QuestionText', 'MC_Answer', 'StudentExplanation']:
df[col] = df[col].fillna('')
df['mc_answer_len'] = df['MC_Answer'].str.len()
df['explanation_len'] = df['StudentExplanation'].str.len()
df['question_len'] = df['QuestionText'].str.len()
df['explanation_to_question_ratio'] = df['explanation_len'] / (df['question_len'] + 1)
for col in ['QuestionText', 'MC_Answer', 'StudentExplanation']:
mf = df[col].apply(extract_math_features).apply(pd.Series)
prefix = 'mc_' if col == 'MC_Answer' else 'exp_' if col == 'StudentExplanation' else ''
mf.columns = [f'{prefix}{c}' for c in mf.columns]
df = pd.concat([df, mf], axis=1)
df['sentence'] = (
"Question: " + df['QuestionText'] +
" Answer: " + df['MC_Answer'] +
" Explanation: " + df['StudentExplanation']
)
return df
# ==========================
# Model Definition
# ==========================
class MathMisconceptionModel(nn.Module):
def __init__(self, n_categories, n_misconceptions, feature_dim):
super().__init__()
self.bert = DebertaV2Model.from_pretrained('microsoft/deberta-v3-small')
self.tokenizer = DebertaV2Tokenizer.from_pretrained('microsoft/deberta-v3-small')
self.feature_processor = nn.Sequential(
nn.Linear(feature_dim, 64),
nn.ReLU(),
nn.Dropout(0.3)
)
self.category_head = nn.Sequential(
nn.Linear(768 + 64, 256),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(256, n_categories)
)
self.misconception_head = nn.Sequential(
nn.Linear(768 + 64, 256),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(256, n_misconceptions)
)
def forward(self, input_texts, features):
tokens = self.tokenizer(
input_texts,
padding=True,
truncation=True,
max_length=MAX_LENGTH,
return_tensors="pt"
).to(DEVICE)
outputs = self.bert(**tokens)
text_emb = outputs.last_hidden_state[:, 0, :]
feat_emb = self.feature_processor(features)
combined = torch.cat([text_emb, feat_emb], dim=1)
return self.category_head(combined), self.misconception_head(combined)
# ==========================
# Load Resources
# ==========================
try:
with open(CAT_ENCODER_PATH, 'rb') as f:
cat_enc = pickle.load(f)
with open(MISC_ENCODER_PATH, 'rb') as f:
misc_enc = pickle.load(f)
with open(FEATURE_COLS_PATH, 'rb') as f:
feature_cols = pickle.load(f)
except FileNotFoundError as e:
print(f"Error loading resources: {e}")
exit()
# Dummy scaler (no scaling)
class IdentityScaler:
def transform(self, X):
return X
scaler = IdentityScaler()
# ==========================
# Prediction Logic
# ==========================
def predict(model_name, question, mc_answer, explanation, export_csv):
model_path = os.path.join(MODELS_DIR, model_name)
if not os.path.exists(model_path):
return "Model not found.", None
data = {
'QuestionText': [question],
'MC_Answer': [mc_answer],
'StudentExplanation': [explanation]
}
df = pd.DataFrame(data)
processed_df = create_features(df.copy())
for col in feature_cols:
if col not in processed_df.columns:
processed_df[col] = 0
features = processed_df[feature_cols].fillna(0).values
features_scaled = scaler.transform(features)
model = MathMisconceptionModel(
n_categories=len(cat_enc.classes_),
n_misconceptions=len(misc_enc.classes_),
feature_dim=features_scaled.shape[1]
).to(DEVICE)
model.load_state_dict(torch.load(model_path, map_location=DEVICE))
model.eval()
text = processed_df['sentence'].tolist()
features_tensor = torch.tensor(features_scaled, dtype=torch.float).to(DEVICE)
with torch.no_grad():
cat_logits, misc_logits = model(text, features_tensor)
cat_pred = torch.argmax(cat_logits, 1).cpu().item()
misc_pred = torch.argmax(misc_logits, 1).cpu().item()
predicted_category = cat_enc.inverse_transform([cat_pred])[0]
predicted_misconception = misc_enc.inverse_transform([misc_pred])[0]
result_text = (
f"Predicted Category: {predicted_category}\n"
f"Predicted Misconception: {predicted_misconception}"
)
csv_path = None
if export_csv:
export_df = pd.DataFrame([{
"Question": question,
"MC_Answer": mc_answer,
"Student_Explanation": explanation,
"Predicted_Category": predicted_category,
"Predicted_Misconception": predicted_misconception,
"Model_Used": model_name
}])
csv_path = "predictions.csv"
file_exists = os.path.isfile(csv_path)
export_df.to_csv(csv_path, mode='a', header=not file_exists, index=False)
return result_text, csv_path
# ==========================
# Gradio UI
# ==========================
model_files = [f for f in os.listdir(MODELS_DIR) if f.endswith('.pt')]
iface = gr.Interface(
fn=predict,
inputs=[
gr.Dropdown(model_files, value=DEFAULT_MODEL, label="Select Model"),
gr.Textbox(label="Enter Question", lines=3),
gr.Textbox(label="Enter Correct Answer (MC_Answer)", lines=1),
gr.Textbox(label="Enter Student's Explanation", lines=5),
gr.Checkbox(label="Export Prediction to CSV")
],
outputs=[
gr.Textbox(label="Prediction Result"),
gr.File(label="CSV File (if exported)")
],
title="Math Misconception Predictor",
description="Select a model and provide the question, correct answer, and student's explanation to get a prediction.",
theme=gr.themes.Soft()
)
if __name__ == "__main__":
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=False,
show_error=True
)
|