File size: 30,138 Bytes
ba2f5d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
Metadata-Version: 2.1
Name: bitarray
Version: 2.5.1
Summary: efficient arrays of booleans -- C extension
Home-page: https://github.com/ilanschnell/bitarray
Author: Ilan Schnell
Author-email: [email protected]
License: PSF
Platform: UNKNOWN
Classifier: License :: OSI Approved :: Python Software Foundation License
Classifier: Development Status :: 6 - Mature
Classifier: Intended Audience :: Developers
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: C
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Topic :: Utilities
License-File: LICENSE

bitarray: efficient arrays of booleans
======================================

This library provides an object type which efficiently represents an array
of booleans.  Bitarrays are sequence types and behave very much like usual
lists.  Eight bits are represented by one byte in a contiguous block of
memory.  The user can select between two representations: little-endian
and big-endian.  All functionality is implemented in C.
Methods for accessing the machine representation are provided, including the
ability to import and export buffers.  This allows creating bitarrays that
are mapped to other objects, including memory-mapped files.


Key features
------------

* The bit endianness can be specified for each bitarray object, see below.
* Sequence methods: slicing (including slice assignment and deletion),
  operations ``+``, ``*``, ``+=``, ``*=``, the ``in`` operator, ``len()``
* Bitwise operations: ``~``, ``&``, ``|``, ``^``, ``<<``, ``>>`` (as well as
  their in-place versions ``&=``, ``|=``, ``^=``, ``<<=``, ``>>=``).
* Fast methods for encoding and decoding variable bit length prefix codes.
* Bitarray objects support the buffer protocol (both importing and
  exporting buffers).
* Packing and unpacking to other binary data formats, e.g. ``numpy.ndarray``.
* Pickling and unpickling of bitarray objects.
* Immutable ``frozenbitarray`` objects which are hashable
* Sequential search
* Type hinting
* Extensive test suite with over 400 unittests.
* Utility module ``bitarray.util``:

  * conversion to and from hexadecimal strings
  * (de-) serialization
  * pretty printing
  * conversion to and from integers
  * creating Huffman codes
  * various count functions
  * other helpful functions


Installation
------------

Python wheels are are available on PyPI for all mayor platforms and Python
versions.  Which means you can simply:

.. code-block:: shell-session

    $ pip install bitarray

In addition, conda packages are available (both the default Anaconda
repository as well as conda-forge support bitarray):

.. code-block:: shell-session

    $ conda install bitarray

Once you have installed the package, you may want to test it:

.. code-block:: shell-session

    $ python -c 'import bitarray; bitarray.test()'
    bitarray is installed in: /Users/ilan/bitarray/bitarray
    bitarray version: 2.5.1
    sys.version: 3.9.4 (default, May 10 2021, 22:13:15) [Clang 11.1.0]
    sys.prefix: /Users/ilan/Mini3/envs/py39
    pointer size: 64 bit
    sizeof(size_t): 8
    sizeof(bitarrayobject): 80
    PY_UINT64_T defined: 1
    USE_WORD_SHIFT: 1
    DEBUG: 0
    .........................................................................
    .........................................................................
    ................................................................
    ----------------------------------------------------------------------
    Ran 433 tests in 0.531s

    OK

You can always import the function test,
and ``test().wasSuccessful()`` will return ``True`` when the test went well.


Using the module
----------------

As mentioned above, bitarray objects behave very much like lists, so
there is not too much to learn.  The biggest difference from list
objects (except that bitarray are obviously homogeneous) is the ability
to access the machine representation of the object.
When doing so, the bit endianness is of importance; this issue is
explained in detail in the section below.  Here, we demonstrate the
basic usage of bitarray objects:

.. code-block:: python

    >>> from bitarray import bitarray
    >>> a = bitarray()         # create empty bitarray
    >>> a.append(1)
    >>> a.extend([1, 0])
    >>> a
    bitarray('110')
    >>> x = bitarray(2 ** 20)  # bitarray of length 1048576 (uninitialized)
    >>> len(x)
    1048576
    >>> bitarray('1001 011')   # initialize from string (whitespace is ignored)
    bitarray('1001011')
    >>> lst = [1, 0, False, True, True]
    >>> a = bitarray(lst)      # initialize from iterable
    >>> a
    bitarray('10011')
    >>> a.count(1)
    3
    >>> a.remove(0)            # removes first occurrence of 0
    >>> a
    bitarray('1011')

Like lists, bitarray objects support slice assignment and deletion:

.. code-block:: python

    >>> a = bitarray(50)
    >>> a.setall(0)            # set all elements in a to 0
    >>> a[11:37:3] = 9 * bitarray('1')
    >>> a
    bitarray('00000000000100100100100100100100100100000000000000')
    >>> del a[12::3]
    >>> a
    bitarray('0000000000010101010101010101000000000')
    >>> a[-6:] = bitarray('10011')
    >>> a
    bitarray('000000000001010101010101010100010011')
    >>> a += bitarray('000111')
    >>> a[9:]
    bitarray('001010101010101010100010011000111')

In addition, slices can be assigned to booleans, which is easier (and
faster) than assigning to a bitarray in which all values are the same:

.. code-block:: python

    >>> a = 20 * bitarray('0')
    >>> a[1:15:3] = True
    >>> a
    bitarray('01001001001001000000')

This is easier and faster than:

.. code-block:: python

    >>> a = 20 * bitarray('0')
    >>> a[1:15:3] = 5 * bitarray('1')
    >>> a
    bitarray('01001001001001000000')

Note that in the latter we have to create a temporary bitarray whose length
must be known or calculated.  Another example of assigning slices to Booleans,
is setting ranges:

.. code-block:: python

    >>> a = bitarray(30)
    >>> a[:] = 0         # set all elements to 0 - equivalent to a.setall(0)
    >>> a[10:25] = 1     # set elements in range(10, 25) to 1
    >>> a
    bitarray('000000000011111111111111100000')


Bitwise operators
-----------------

Bitarray objects support the bitwise operators ``~``, ``&``, ``|``, ``^``,
``<<``, ``>>`` (as well as their in-place versions ``&=``, ``|=``, ``^=``,
``<<=``, ``>>=``).  The behavior is very much what one would expect:

.. code-block:: python

    >>> a = bitarray('101110001')
    >>> ~a  # invert
    bitarray('010001110')
    >>> b = bitarray('111001011')
    >>> a ^ b
    bitarray('010111010')
    >>> a &= b
    >>> a
    bitarray('101000001')
    >>> a <<= 2   # in-place left shift by 2
    >>> a
    bitarray('100000100')
    >>> b >> 1
    bitarray('011100101')

The C language does not specify the behavior of negative shifts and
of left shifts larger or equal than the width of the promoted left operand.
The exact behavior is compiler/machine specific.
This Python bitarray library specifies the behavior as follows:

* the length of the bitarray is never changed by any shift operation
* blanks are filled by 0
* negative shifts raise ``ValueError``
* shifts larger or equal to the length of the bitarray result in
  bitarrays with all values 0


Bit endianness
--------------

Unless explicitly converting to machine representation, using
the ``.tobytes()``, ``.frombytes()``, ``.tofile()`` and ``.fromfile()``
methods, as well as using ``memoryview``, the bit endianness will have no
effect on any computation, and one can skip this section.

Since bitarrays allows addressing individual bits, where the machine
represents 8 bits in one byte, there are two obvious choices for this
mapping: little-endian and big-endian.

When dealing with the machine representation of bitarray objects, it is
recommended to always explicitly specify the endianness.

By default, bitarrays use big-endian representation:

.. code-block:: python

    >>> a = bitarray()
    >>> a.endian()
    'big'
    >>> a.frombytes(b'A')
    >>> a
    bitarray('01000001')
    >>> a[6] = 1
    >>> a.tobytes()
    b'C'

Big-endian means that the most-significant bit comes first.
Here, ``a[0]`` is the lowest address (index) and most significant bit,
and ``a[7]`` is the highest address and least significant bit.

When creating a new bitarray object, the endianness can always be
specified explicitly:

.. code-block:: python

    >>> a = bitarray(endian='little')
    >>> a.frombytes(b'A')
    >>> a
    bitarray('10000010')
    >>> a.endian()
    'little'

Here, the low-bit comes first because little-endian means that increasing
numeric significance corresponds to an increasing address.
So ``a[0]`` is the lowest address and least significant bit,
and ``a[7]`` is the highest address and most significant bit.

The bit endianness is a property of the bitarray object.
The endianness cannot be changed once a bitarray object is created.
When comparing bitarray objects, the endianness (and hence the machine
representation) is irrelevant; what matters is the mapping from indices
to bits:

.. code-block:: python

    >>> bitarray('11001', endian='big') == bitarray('11001', endian='little')
    True

Bitwise operations (``|``, ``^``, ``&=``, ``|=``, ``^=``, ``~``) are
implemented efficiently using the corresponding byte operations in C, i.e. the
operators act on the machine representation of the bitarray objects.
Therefore, it is not possible to perform bitwise operators on bitarrays
with different endianness.

When converting to and from machine representation, using
the ``.tobytes()``, ``.frombytes()``, ``.tofile()`` and ``.fromfile()``
methods, the endianness matters:

.. code-block:: python

    >>> a = bitarray(endian='little')
    >>> a.frombytes(b'\x01')
    >>> a
    bitarray('10000000')
    >>> b = bitarray(endian='big')
    >>> b.frombytes(b'\x80')
    >>> b
    bitarray('10000000')
    >>> a == b
    True
    >>> a.tobytes() == b.tobytes()
    False

As mentioned above, the endianness can not be changed once an object is
created.  However, you can create a new bitarray with different endianness:

.. code-block:: python

    >>> a = bitarray('111000', endian='little')
    >>> b = bitarray(a, endian='big')
    >>> b
    bitarray('111000')
    >>> a == b
    True


Buffer protocol
---------------

Bitarray objects support the buffer protocol.  They can both export their
own buffer, as well as import another object's buffer.  To learn more about
this topic, please read `buffer protocol <https://github.com/ilanschnell/bitarray/blob/master/doc/buffer.rst>`__.  There is also an example that shows how
to memory-map a file to a bitarray: `mmapped-file.py <https://github.com/ilanschnell/bitarray/blob/master/examples/mmapped-file.py>`__


Variable bit length prefix codes
--------------------------------

The ``.encode()`` method takes a dictionary mapping symbols to bitarrays
and an iterable, and extends the bitarray object with the encoded symbols
found while iterating.  For example:

.. code-block:: python

    >>> d = {'H':bitarray('111'), 'e':bitarray('0'),
    ...      'l':bitarray('110'), 'o':bitarray('10')}
    ...
    >>> a = bitarray()
    >>> a.encode(d, 'Hello')
    >>> a
    bitarray('111011011010')

Note that the string ``'Hello'`` is an iterable, but the symbols are not
limited to characters, in fact any immutable Python object can be a symbol.
Taking the same dictionary, we can apply the ``.decode()`` method which will
return a list of the symbols:

.. code-block:: python

    >>> a.decode(d)
    ['H', 'e', 'l', 'l', 'o']
    >>> ''.join(a.decode(d))
    'Hello'

Since symbols are not limited to being characters, it is necessary to return
them as elements of a list, rather than simply returning the joined string.
The above dictionary ``d`` can be efficiently constructed using the function
``bitarray.util.huffman_code()``.  I also wrote `Huffman coding in Python
using bitarray <http://ilan.schnell-web.net/prog/huffman/>`__ for more
background information.

When the codes are large, and you have many decode calls, most time will
be spent creating the (same) internal decode tree objects.  In this case,
it will be much faster to create a ``decodetree`` object, which can be
passed to bitarray's ``.decode()`` and ``.iterdecode()`` methods, instead
of passing the prefix code dictionary to those methods itself:

.. code-block:: python

    >>> from bitarray import bitarray, decodetree
    >>> t = decodetree({'a': bitarray('0'), 'b': bitarray('1')})
    >>> a = bitarray('0110')
    >>> a.decode(t)
    ['a', 'b', 'b', 'a']
    >>> ''.join(a.iterdecode(t))
    'abba'

The sole purpose of the immutable ``decodetree`` object is to be passed
to bitarray's ``.decode()`` and ``.iterdecode()`` methods.


Frozenbitarrays
---------------

A ``frozenbitarray`` object is very similar to the bitarray object.
The difference is that this a ``frozenbitarray`` is immutable, and hashable,
and can therefore be used as a dictionary key:

.. code-block:: python

    >>> from bitarray import frozenbitarray
    >>> key = frozenbitarray('1100011')
    >>> {key: 'some value'}
    {frozenbitarray('1100011'): 'some value'}
    >>> key[3] = 1
    Traceback (most recent call last):
        ...
    TypeError: frozenbitarray is immutable


Reference
=========

bitarray version: 2.5.1 -- `change log <https://github.com/ilanschnell/bitarray/blob/master/doc/changelog.rst>`__

In the following, ``item`` and ``value`` are usually a single bit -
an integer 0 or 1.


The bitarray object:
--------------------

``bitarray(initializer=0, /, endian='big', buffer=None)`` -> bitarray
   Return a new bitarray object whose items are bits initialized from
   the optional initial object, and endianness.
   The initializer may be of the following types:

   ``int``: Create a bitarray of given integer length.  The initial values are
   uninitialized.

   ``str``: Create bitarray from a string of ``0`` and ``1``.

   ``iterable``: Create bitarray from iterable or sequence or integers 0 or 1.

   Optional keyword arguments:

   ``endian``: Specifies the bit endianness of the created bitarray object.
   Allowed values are ``big`` and ``little`` (the default is ``big``).
   The bit endianness effects the buffer representation of the bitarray.

   ``buffer``: Any object which exposes a buffer.  When provided, ``initializer``
   cannot be present (or has to be ``None``).  The imported buffer may be
   readonly or writable, depending on the object type.

   New in version 2.3: optional ``buffer`` argument.


bitarray methods:
-----------------

``all()`` -> bool
   Return True when all bits in the array are True.
   Note that ``a.all()`` is faster than ``all(a)``.


``any()`` -> bool
   Return True when any bit in the array is True.
   Note that ``a.any()`` is faster than ``any(a)``.


``append(item, /)``
   Append ``item`` to the end of the bitarray.


``buffer_info()`` -> tuple
   Return a tuple containing:

   0. memory address of buffer
   1. buffer size (in bytes)
   2. bit endianness as a string
   3. number of unused padding bits
   4. allocated memory for the buffer (in bytes)
   5. memory is read-only
   6. buffer is imported
   7. number of buffer exports


``bytereverse(start=0, stop=<end of buffer>, /)``
   Reverse the order of bits in byte-range(start, stop) in-place.
   The start and stop indices are given in terms of bytes (not bits).
   Also note that this method only changes the buffer; it does not change the
   endianness of the bitarray object.

   New in version 2.2.5: optional start and stop arguments.


``clear()``
   Remove all items from the bitarray.

   New in version 1.4.


``copy()`` -> bitarray
   Return a copy of the bitarray.


``count(value=1, start=0, stop=<end of array>, step=1, /)`` -> int
   Count the number of occurrences of ``value`` in the bitarray.

   New in version 1.1.0: optional start and stop arguments.

   New in version 2.3.7: optional step argument.


``decode(code, /)`` -> list
   Given a prefix code (a dict mapping symbols to bitarrays, or ``decodetree``
   object), decode the content of the bitarray and return it as a list of
   symbols.


``encode(code, iterable, /)``
   Given a prefix code (a dict mapping symbols to bitarrays),
   iterate over the iterable object with symbols, and extend the bitarray
   with the corresponding bitarray for each symbol.


``endian()`` -> str
   Return the bit endianness of the bitarray as a string (``little`` or ``big``).


``extend(iterable, /)``
   Append all items from ``iterable`` to the end of the bitarray.
   If the iterable is a string, each ``0`` and ``1`` are appended as
   bits (ignoring whitespace and underscore).


``fill()`` -> int
   Add zeros to the end of the bitarray, such that the length of the bitarray
   will be a multiple of 8, and return the number of bits added (0..7).


``find(sub_bitarray, start=0, stop=<end of array>, /)`` -> int
   Return the lowest index where sub_bitarray is found, such that sub_bitarray
   is contained within ``[start:stop]``.
   Return -1 when sub_bitarray is not found.

   New in version 2.1.


``frombytes(bytes, /)``
   Extend the bitarray with raw bytes from a bytes-like object.
   Each added byte will add eight bits to the bitarray.

   New in version 2.5.0: allow bytes-like argument.


``fromfile(f, n=-1, /)``
   Extend bitarray with up to n bytes read from the file object f.
   When n is omitted or negative, reads all data until EOF.
   When n is provided and positive but exceeds the data available,
   ``EOFError`` is raised (but the available data is still read and appended.


``index(sub_bitarray, start=0, stop=<end of array>, /)`` -> int
   Return the lowest index where sub_bitarray is found, such that sub_bitarray
   is contained within ``[start:stop]``.
   Raises ``ValueError`` when the sub_bitarray is not present.


``insert(index, value, /)``
   Insert ``value`` into the bitarray before ``index``.


``invert(index=<all bits>, /)``
   Invert all bits in the array (in-place).
   When the optional ``index`` is given, only invert the single bit at index.

   New in version 1.5.3: optional index argument.


``iterdecode(code, /)`` -> iterator
   Given a prefix code (a dict mapping symbols to bitarrays, or ``decodetree``
   object), decode the content of the bitarray and return an iterator over
   the symbols.


``itersearch(sub_bitarray, /)`` -> iterator
   Searches for the given sub_bitarray in self, and return an iterator over
   the start positions where bitarray matches self.


``pack(bytes, /)``
   Extend the bitarray from a bytes-like object, where each byte corresponds
   to a single bit.  The byte ``b'\x00'`` maps to bit 0 and all other bytes
   map to bit 1.
   This method, as well as the unpack method, are meant for efficient
   transfer of data between bitarray objects to other python objects
   (for example NumPy's ndarray object) which have a different memory view.

   New in version 2.5.0: allow bytes-like argument.


``pop(index=-1, /)`` -> item
   Return the i-th (default last) element and delete it from the bitarray.
   Raises ``IndexError`` if bitarray is empty or index is out of range.


``remove(value, /)``
   Remove the first occurrence of ``value`` in the bitarray.
   Raises ``ValueError`` if item is not present.


``reverse()``
   Reverse all bits in the array (in-place).


``search(sub_bitarray, limit=<none>, /)`` -> list
   Searches for the given sub_bitarray in self, and return the list of start
   positions.
   The optional argument limits the number of search results to the integer
   specified.  By default, all search results are returned.


``setall(value, /)``
   Set all elements in the bitarray to ``value``.
   Note that ``a.setall(value)`` is equivalent to ``a[:] = value``.


``sort(reverse=False)``
   Sort the bits in the array (in-place).


``to01()`` -> str
   Return a string containing '0's and '1's, representing the bits in the
   bitarray.


``tobytes()`` -> bytes
   Return the bitarray buffer in bytes (unused bits are set to zero).


``tofile(f, /)``
   Write the byte representation of the bitarray to the file object f.


``tolist()`` -> list
   Return a list with the items (0 or 1) in the bitarray.
   Note that the list object being created will require 32 or 64 times more
   memory (depending on the machine architecture) than the bitarray object,
   which may cause a memory error if the bitarray is very large.


``unpack(zero=b'\x00', one=b'\x01')`` -> bytes
   Return bytes containing one character for each bit in the bitarray,
   using the specified mapping.


Other objects:
--------------

``frozenbitarray(initializer=0, /, endian='big', buffer=None)`` -> frozenbitarray
   Return a frozenbitarray object, which is initialized the same way a bitarray
   object is initialized.  A frozenbitarray is immutable and hashable.
   Its contents cannot be altered after it is created; however, it can be used
   as a dictionary key.

   New in version 1.1.


``decodetree(code, /)`` -> decodetree
   Given a prefix code (a dict mapping symbols to bitarrays),
   create a binary tree object to be passed to ``.decode()`` or ``.iterdecode()``.

   New in version 1.6.


Functions defined in the `bitarray` module:
-------------------------------------------

``bits2bytes(n, /)`` -> int
   Return the number of bytes necessary to store n bits.


``get_default_endian()`` -> string
   Return the default endianness for new bitarray objects being created.
   Unless ``_set_default_endian()`` is called, the return value is ``big``.

   New in version 1.3.


``test(verbosity=1, repeat=1)`` -> TextTestResult
   Run self-test, and return unittest.runner.TextTestResult object.


Functions defined in `bitarray.util` module:
--------------------------------------------

This sub-module was added in version 1.2.

``zeros(length, /, endian=None)`` -> bitarray
   Create a bitarray of length, with all values 0, and optional
   endianness, which may be 'big', 'little'.


``urandom(length, /, endian=None)`` -> bitarray
   Return a bitarray of ``length`` random bits (uses ``os.urandom``).

   New in version 1.7.


``pprint(bitarray, /, stream=None, group=8, indent=4, width=80)``
   Prints the formatted representation of object on ``stream`` (which defaults
   to ``sys.stdout``).  By default, elements are grouped in bytes (8 elements),
   and 8 bytes (64 elements) per line.
   Non-bitarray objects are printed by the standard library
   function ``pprint.pprint()``.

   New in version 1.8.


``make_endian(bitarray, /, endian)`` -> bitarray
   When the endianness of the given bitarray is different from ``endian``,
   return a new bitarray, with endianness ``endian`` and the same elements
   as the original bitarray.
   Otherwise (endianness is already ``endian``) the original bitarray is returned
   unchanged.

   New in version 1.3.


``rindex(bitarray, value=1, start=0, stop=<end of array>, /)`` -> int
   Return the rightmost (highest) index of ``value`` in bitarray.
   Raises ``ValueError`` if the value is not present.

   New in version 2.3.0: optional start and stop arguments.


``strip(bitarray, /, mode='right')`` -> bitarray
   Return a new bitarray with zeros stripped from left, right or both ends.
   Allowed values for mode are the strings: ``left``, ``right``, ``both``


``count_n(a, n, value=1, /)`` -> int
   Return lowest index ``i`` for which ``a[:i].count(value) == n``.
   Raises ``ValueError``, when n exceeds total count (``a.count(value)``).

   New in version 2.3.6: optional value argument.


``parity(a, /)`` -> int
   Return the parity of bitarray ``a``.
   This is equivalent to ``a.count() % 2`` (but more efficient).

   New in version 1.9.


``count_and(a, b, /)`` -> int
   Return ``(a & b).count()`` in a memory efficient manner,
   as no intermediate bitarray object gets created.


``count_or(a, b, /)`` -> int
   Return ``(a | b).count()`` in a memory efficient manner,
   as no intermediate bitarray object gets created.


``count_xor(a, b, /)`` -> int
   Return ``(a ^ b).count()`` in a memory efficient manner,
   as no intermediate bitarray object gets created.


``subset(a, b, /)`` -> bool
   Return ``True`` if bitarray ``a`` is a subset of bitarray ``b``.
   ``subset(a, b)`` is equivalent to ``(a & b).count() == a.count()`` but is more
   efficient since we can stop as soon as one mismatch is found, and no
   intermediate bitarray object gets created.


``ba2hex(bitarray, /)`` -> hexstr
   Return a string containing the hexadecimal representation of
   the bitarray (which has to be multiple of 4 in length).


``hex2ba(hexstr, /, endian=None)`` -> bitarray
   Bitarray of hexadecimal representation.  hexstr may contain any number
   (including odd numbers) of hex digits (upper or lower case).


``ba2base(n, bitarray, /)`` -> str
   Return a string containing the base ``n`` ASCII representation of
   the bitarray.  Allowed values for ``n`` are 2, 4, 8, 16, 32 and 64.
   The bitarray has to be multiple of length 1, 2, 3, 4, 5 or 6 respectively.
   For ``n=16`` (hexadecimal), ``ba2hex()`` will be much faster, as ``ba2base()``
   does not take advantage of byte level operations.
   For ``n=32`` the RFC 4648 Base32 alphabet is used, and for ``n=64`` the
   standard base 64 alphabet is used.

   See also: `Bitarray representations <https://github.com/ilanschnell/bitarray/blob/master/doc/represent.rst>`__

   New in version 1.9.


``base2ba(n, asciistr, /, endian=None)`` -> bitarray
   Bitarray of the base ``n`` ASCII representation.
   Allowed values for ``n`` are 2, 4, 8, 16, 32 and 64.
   For ``n=16`` (hexadecimal), ``hex2ba()`` will be much faster, as ``base2ba()``
   does not take advantage of byte level operations.
   For ``n=32`` the RFC 4648 Base32 alphabet is used, and for ``n=64`` the
   standard base 64 alphabet is used.

   See also: `Bitarray representations <https://github.com/ilanschnell/bitarray/blob/master/doc/represent.rst>`__

   New in version 1.9.


``ba2int(bitarray, /, signed=False)`` -> int
   Convert the given bitarray to an integer.
   The bit-endianness of the bitarray is respected.
   ``signed`` indicates whether two's complement is used to represent the integer.


``int2ba(int, /, length=None, endian=None, signed=False)`` -> bitarray
   Convert the given integer to a bitarray (with given endianness,
   and no leading (big-endian) / trailing (little-endian) zeros), unless
   the ``length`` of the bitarray is provided.  An ``OverflowError`` is raised
   if the integer is not representable with the given number of bits.
   ``signed`` determines whether two's complement is used to represent the integer,
   and requires ``length`` to be provided.


``serialize(bitarray, /)`` -> bytes
   Return a serialized representation of the bitarray, which may be passed to
   ``deserialize()``.  It efficiently represents the bitarray object (including
   its endianness) and is guaranteed not to change in future releases.

   See also: `Bitarray representations <https://github.com/ilanschnell/bitarray/blob/master/doc/represent.rst>`__

   New in version 1.8.


``deserialize(bytes, /)`` -> bitarray
   Return a bitarray given a bytes-like representation such as returned
   by ``serialize()``.

   See also: `Bitarray representations <https://github.com/ilanschnell/bitarray/blob/master/doc/represent.rst>`__

   New in version 1.8.

   New in version 2.5.0: allow bytes-like argument.


``vl_encode(bitarray, /)`` -> bytes
   Return variable length binary representation of bitarray.
   This representation is useful for efficiently storing small bitarray
   in a binary stream.  Use ``vl_decode()`` for decoding.

   See also: `Variable length bitarray format <https://github.com/ilanschnell/bitarray/blob/master/doc/variable_length.rst>`__

   New in version 2.2.


``vl_decode(stream, /, endian=None)`` -> bitarray
   Decode binary stream (an integer iterator, or bytes-like object), and return
   the decoded bitarray.  This function consumes only one bitarray and leaves
   the remaining stream untouched.  ``StopIteration`` is raised when no
   terminating byte is found.
   Use ``vl_encode()`` for encoding.

   See also: `Variable length bitarray format <https://github.com/ilanschnell/bitarray/blob/master/doc/variable_length.rst>`__

   New in version 2.2.


``huffman_code(dict, /, endian=None)`` -> dict
   Given a frequency map, a dictionary mapping symbols to their frequency,
   calculate the Huffman code, i.e. a dict mapping those symbols to
   bitarrays (with given endianness).  Note that the symbols are not limited
   to being strings.  Symbols may may be any hashable object (such as ``None``).


``canonical_huffman(dict, /)`` -> tuple
   Given a frequency map, a dictionary mapping symbols to their frequency,
   calculate the canonical Huffman code.  Returns a tuple containing:

   0. the canonical Huffman code as a dict mapping symbols to bitarrays
   1. a list containing the number of symbols of each code length
   2. a list of symbols in canonical order

   Note: the two lists may be used as input for ``canonical_decode()``.

   See also: `Canonical Huffman Coding <https://github.com/ilanschnell/bitarray/blob/master/doc/canonical.rst>`__

   New in version 2.5.


``canonical_decode(bitarray, count, symbol, /)`` -> iterator
   Decode bitarray using canonical Huffman decoding tables
   where ``count`` is a sequence containing the number of symbols of each length
   and ``symbol`` is a sequence of symbols in canonical order.

   See also: `Canonical Huffman Coding <https://github.com/ilanschnell/bitarray/blob/master/doc/canonical.rst>`__

   New in version 2.5.