Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from io import BytesIO | |
# Load models optimized for CPU | |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-tiny.en", device=-1) | |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=-1) | |
question_generator = pipeline("text2text-generation", model="google/t5-efficient-tiny", device=-1) | |
# Streamlit UI | |
st.title("Curate AI - Audio Transcription and Summarization") | |
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "m4a"]) | |
if uploaded_file is not None: | |
st.audio(uploaded_file, format='audio/wav') | |
# Convert the uploaded file to a format suitable for the transcription model | |
audio_bytes = BytesIO(uploaded_file.read()) | |
# Transcribing the audio | |
st.write("Transcribing the audio...") | |
lecture_text = transcriber(audio_bytes)["text"] | |
st.write("Transcription: ", lecture_text) | |
# Summarization | |
st.write("Summarizing the transcription...") | |
num_words = len(lecture_text.split()) | |
max_length = min(num_words, 1024) # Max input for BART is 1024 tokens | |
summary = summarizer(lecture_text, max_length=1024, min_length=int(max_length * 0.1), truncation=True) | |
st.write("Summary: ", summary[0]['summary_text']) | |
# Question Generation | |
context = f"Based on the following lecture summary: {summary[0]['summary_text']}, generate some relevant practice questions." | |
st.write("Generating questions...") | |
questions = question_generator(context, max_new_tokens=50) | |
for question in questions: | |
st.write(question["generated_text"]) | |