Cryptic
Initial commit with Streamlit app and requirements
ce2a837
raw
history blame
1.64 kB
import streamlit as st
from transformers import pipeline
from io import BytesIO
# Load models optimized for CPU
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-tiny.en", device=-1)
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=-1)
question_generator = pipeline("text2text-generation", model="google/t5-efficient-tiny", device=-1)
# Streamlit UI
st.title("Curate AI - Audio Transcription and Summarization")
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "m4a"])
if uploaded_file is not None:
st.audio(uploaded_file, format='audio/wav')
# Convert the uploaded file to a format suitable for the transcription model
audio_bytes = BytesIO(uploaded_file.read())
# Transcribing the audio
st.write("Transcribing the audio...")
lecture_text = transcriber(audio_bytes)["text"]
st.write("Transcription: ", lecture_text)
# Summarization
st.write("Summarizing the transcription...")
num_words = len(lecture_text.split())
max_length = min(num_words, 1024) # Max input for BART is 1024 tokens
summary = summarizer(lecture_text, max_length=1024, min_length=int(max_length * 0.1), truncation=True)
st.write("Summary: ", summary[0]['summary_text'])
# Question Generation
context = f"Based on the following lecture summary: {summary[0]['summary_text']}, generate some relevant practice questions."
st.write("Generating questions...")
questions = question_generator(context, max_new_tokens=50)
for question in questions:
st.write(question["generated_text"])