Spaces:
Sleeping
Sleeping
Cryptic
commited on
Commit
·
66cc2a4
1
Parent(s):
ee3f375
Update app.py to handle audio transcription and summarization
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
-
import soundfile as sf
|
3 |
-
import numpy as np
|
4 |
from transformers import pipeline
|
|
|
|
|
5 |
|
6 |
# Load Transcriber model optimized for CPU
|
7 |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-tiny.en", device=-1)
|
@@ -9,32 +9,31 @@ transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-tin
|
|
9 |
# Load Summary Model optimized for CPU
|
10 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=-1)
|
11 |
|
12 |
-
# Streamlit
|
13 |
-
st.
|
14 |
-
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "flac"])
|
15 |
|
|
|
16 |
if uploaded_file is not None:
|
17 |
-
#
|
18 |
-
audio_data,
|
19 |
-
|
20 |
-
# Transcribing audio
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
24 |
num_words = len(lecture_text.split())
|
25 |
max_length = min(num_words, 1024) # BART model max input length is 1024 tokens
|
26 |
-
max_length = int(max_length * 0.75) #
|
27 |
-
|
28 |
-
if max_length > 1024:
|
29 |
-
lecture_text = lecture_text[:int(1024 / 0.75)] # Truncate to fit the model's token limit
|
30 |
|
31 |
# Summarization
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
# Clean up the summary text
|
40 |
if not summary[0]["summary_text"].endswith((".", "!", "?")):
|
@@ -42,6 +41,9 @@ if uploaded_file is not None:
|
|
42 |
if last_period_index != -1:
|
43 |
summary[0]["summary_text"] = summary[0]["summary_text"][:last_period_index + 1]
|
44 |
|
45 |
-
# Output
|
46 |
-
st.write("### Summary
|
47 |
-
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
from transformers import pipeline
|
3 |
+
import soundfile as sf
|
4 |
+
import torch
|
5 |
|
6 |
# Load Transcriber model optimized for CPU
|
7 |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-tiny.en", device=-1)
|
|
|
9 |
# Load Summary Model optimized for CPU
|
10 |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=-1)
|
11 |
|
12 |
+
# Streamlit file uploader
|
13 |
+
uploaded_file = st.file_uploader("Upload an audio file", type=["wav"])
|
|
|
14 |
|
15 |
+
# Process the uploaded file
|
16 |
if uploaded_file is not None:
|
17 |
+
# Save the uploaded file temporarily
|
18 |
+
audio_data, samplerate = sf.read(uploaded_file)
|
19 |
+
|
20 |
+
# Transcribing the audio
|
21 |
+
with st.spinner('Transcribing the audio...'):
|
22 |
+
lecture_text = transcriber(uploaded_file)["text"]
|
23 |
+
|
24 |
+
# Preprocessing text
|
25 |
num_words = len(lecture_text.split())
|
26 |
max_length = min(num_words, 1024) # BART model max input length is 1024 tokens
|
27 |
+
max_length = int(max_length * 0.75) # Approx token conversion
|
|
|
|
|
|
|
28 |
|
29 |
# Summarization
|
30 |
+
with st.spinner('Summarizing the lecture...'):
|
31 |
+
summary = summarizer(
|
32 |
+
lecture_text,
|
33 |
+
max_length=1024, # DistilBART max input length
|
34 |
+
min_length=int(max_length * 0.1),
|
35 |
+
truncation=True
|
36 |
+
)
|
37 |
|
38 |
# Clean up the summary text
|
39 |
if not summary[0]["summary_text"].endswith((".", "!", "?")):
|
|
|
41 |
if last_period_index != -1:
|
42 |
summary[0]["summary_text"] = summary[0]["summary_text"][:last_period_index + 1]
|
43 |
|
44 |
+
# Output summary
|
45 |
+
st.write("\n### Summary:\n", summary[0]["summary_text"])
|
46 |
+
|
47 |
+
else:
|
48 |
+
st.warning("Please upload a valid audio file.")
|
49 |
+
|