Spaces:
Sleeping
Sleeping
Cryptic
commited on
Commit
·
cb9426c
1
Parent(s):
5a5050b
Test
Browse files- app.py +140 -28
- requirements.txt +6 -5
app.py
CHANGED
@@ -1,38 +1,150 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
|
|
|
|
3 |
import numpy as np
|
|
|
|
|
4 |
import soundfile as sf
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
question_generator = pipeline("text2text-generation", model="google/t5-efficient-tiny", device=-1)
|
10 |
|
11 |
-
#
|
12 |
-
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
st.write("Generating questions...")
|
36 |
-
questions = question_generator(context, max_new_tokens=50)
|
37 |
-
for question in questions:
|
38 |
-
st.write(question["generated_text"])
|
|
|
1 |
import streamlit as st
|
2 |
+
import tempfile
|
3 |
+
import os
|
4 |
+
import librosa
|
5 |
import numpy as np
|
6 |
+
from transformers import pipeline
|
7 |
+
import torch
|
8 |
import soundfile as sf
|
9 |
|
10 |
+
# Page configuration
|
11 |
+
st.set_page_config(page_title="Audio Processing App", layout="wide")
|
12 |
+
st.title("Audio Lecture Processing App")
|
|
|
13 |
|
14 |
+
# Initialize session state
|
15 |
+
if 'models_loaded' not in st.session_state:
|
16 |
+
st.session_state.models_loaded = False
|
17 |
|
18 |
+
@st.cache_resource
|
19 |
+
def load_models():
|
20 |
+
"""Load ML models with proper error handling"""
|
21 |
+
try:
|
22 |
+
# Check for CUDA availability
|
23 |
+
device = 0 if torch.cuda.is_available() else -1
|
24 |
+
|
25 |
+
models = {
|
26 |
+
'transcriber': pipeline("automatic-speech-recognition",
|
27 |
+
model="openai/whisper-tiny.en",
|
28 |
+
device=device),
|
29 |
+
'summarizer': pipeline("summarization",
|
30 |
+
model="sshleifer/distilbart-cnn-12-6",
|
31 |
+
device=device)
|
32 |
+
}
|
33 |
+
return models, None
|
34 |
+
except Exception as e:
|
35 |
+
return None, f"Error loading models: {str(e)}"
|
36 |
|
37 |
+
def load_and_convert_audio(audio_path):
|
38 |
+
"""Load audio using librosa and convert to WAV format"""
|
39 |
+
try:
|
40 |
+
# Load audio with librosa (handles many formats)
|
41 |
+
audio_data, sample_rate = librosa.load(audio_path, sr=16000) # Whisper expects 16kHz
|
42 |
+
|
43 |
+
# Convert to float32
|
44 |
+
audio_data = audio_data.astype(np.float32)
|
45 |
+
|
46 |
+
# Create a temporary WAV file
|
47 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_wav:
|
48 |
+
sf.write(temp_wav.name, audio_data, sample_rate, format='WAV')
|
49 |
+
return temp_wav.name
|
50 |
+
except Exception as e:
|
51 |
+
raise Exception(f"Error converting audio: {str(e)}")
|
52 |
|
53 |
+
def process_audio(audio_path, models):
|
54 |
+
"""Process audio file with progress tracking"""
|
55 |
+
results = {}
|
56 |
+
temp_wav_path = None
|
57 |
+
|
58 |
+
try:
|
59 |
+
# Convert audio to compatible format
|
60 |
+
with st.spinner('Converting audio format...'):
|
61 |
+
temp_wav_path = load_and_convert_audio(audio_path)
|
62 |
+
|
63 |
+
# Transcription
|
64 |
+
with st.spinner('Transcribing audio...'):
|
65 |
+
results['transcription'] = models['transcriber'](temp_wav_path)["text"]
|
66 |
+
|
67 |
+
# Summarization
|
68 |
+
with st.spinner('Generating summary...'):
|
69 |
+
# Preprocess text
|
70 |
+
text = results['transcription']
|
71 |
+
num_words = len(text.split())
|
72 |
+
max_length = min(num_words, 1024)
|
73 |
+
max_length = int(max_length * 0.75)
|
74 |
+
|
75 |
+
summary = models['summarizer'](
|
76 |
+
text,
|
77 |
+
max_length=max_length,
|
78 |
+
min_length=int(max_length * 0.1),
|
79 |
+
truncation=True
|
80 |
+
)
|
81 |
+
results['summary'] = summary[0]['summary_text']
|
82 |
+
|
83 |
+
# Clean up summary
|
84 |
+
if not results['summary'].endswith((".", "!", "?")):
|
85 |
+
last_period_index = results['summary'].rfind(".")
|
86 |
+
if last_period_index != -1:
|
87 |
+
results['summary'] = results['summary'][:last_period_index + 1]
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
st.error(f"Error processing audio: {str(e)}")
|
91 |
+
return None
|
92 |
+
|
93 |
+
finally:
|
94 |
+
# Clean up temporary WAV file
|
95 |
+
if temp_wav_path and os.path.exists(temp_wav_path):
|
96 |
+
try:
|
97 |
+
os.unlink(temp_wav_path)
|
98 |
+
except:
|
99 |
+
pass
|
100 |
+
|
101 |
+
return results
|
102 |
|
103 |
+
# Main app
|
104 |
+
def main():
|
105 |
+
# Load models
|
106 |
+
if not st.session_state.models_loaded:
|
107 |
+
with st.spinner('Loading models... This may take a few minutes...'):
|
108 |
+
models, error = load_models()
|
109 |
+
if error:
|
110 |
+
st.error(error)
|
111 |
+
return
|
112 |
+
st.session_state.models_loaded = True
|
113 |
+
st.session_state.models = models
|
114 |
+
|
115 |
+
# File uploader with clear instructions
|
116 |
+
st.write("Upload an audio file of your lecture (supported formats: WAV, MP3, M4A, FLAC)")
|
117 |
+
uploaded_file = st.file_uploader("Choose a file", type=["wav", "mp3", "m4a", "flac"])
|
118 |
+
|
119 |
+
if uploaded_file is not None:
|
120 |
+
# Create a temporary file for the uploaded content
|
121 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{uploaded_file.name.split('.')[-1]}") as temp_audio_file:
|
122 |
+
temp_audio_file.write(uploaded_file.getbuffer())
|
123 |
+
temp_audio_path = temp_audio_file.name
|
124 |
+
|
125 |
+
try:
|
126 |
+
# Process the audio
|
127 |
+
results = process_audio(temp_audio_path, st.session_state.models)
|
128 |
+
|
129 |
+
if results:
|
130 |
+
# Display results in organized sections
|
131 |
+
st.subheader("📝 Transcription")
|
132 |
+
with st.expander("Show full transcription"):
|
133 |
+
st.write(results['transcription'])
|
134 |
+
|
135 |
+
st.subheader("📌 Summary")
|
136 |
+
st.write(results['summary'])
|
137 |
+
|
138 |
+
except Exception as e:
|
139 |
+
st.error(f"An unexpected error occurred: {str(e)}")
|
140 |
+
|
141 |
+
finally:
|
142 |
+
# Cleanup original uploaded file
|
143 |
+
if os.path.exists(temp_audio_path):
|
144 |
+
try:
|
145 |
+
os.unlink(temp_audio_path)
|
146 |
+
except:
|
147 |
+
pass
|
148 |
|
149 |
+
if __name__ == "__main__":
|
150 |
+
main()
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
streamlit
|
2 |
-
transformers
|
3 |
-
torch
|
4 |
-
soundfile
|
5 |
-
numpy
|
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
soundfile
|
5 |
+
numpy
|
6 |
+
librosa
|