Duplicate from sessex/CLIPSeg2
Browse filesCo-authored-by: Sydney Essex <[email protected]>
- .gitattributes +34 -0
- 0.001861_submarine _ submarine_0.9862991.jpg +0 -0
- 0.003473_cliff _ cliff_0.51112.jpg +0 -0
- 0.004658_spatula _ spatula_0.35416836.jpg +0 -0
- README.md +13 -0
- app.py +108 -0
- packages.txt +1 -0
- requirements.txt +3 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
0.001861_submarine _ submarine_0.9862991.jpg
ADDED
![]() |
0.003473_cliff _ cliff_0.51112.jpg
ADDED
![]() |
0.004658_spatula _ spatula_0.35416836.jpg
ADDED
![]() |
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: CLIPSeg
|
3 |
+
emoji: 🦀
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.16.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: sessex/CLIPSeg2
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
10 |
+
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
11 |
+
|
12 |
+
|
13 |
+
def process_image(image, prompt):
|
14 |
+
inputs = processor(
|
15 |
+
text=prompt, images=image, padding="max_length", return_tensors="pt"
|
16 |
+
)
|
17 |
+
|
18 |
+
# predict
|
19 |
+
with torch.no_grad():
|
20 |
+
outputs = model(**inputs)
|
21 |
+
preds = outputs.logits
|
22 |
+
|
23 |
+
pred = torch.sigmoid(preds)
|
24 |
+
mat = pred.cpu().numpy()
|
25 |
+
mask = Image.fromarray(np.uint8(mat * 255), "L")
|
26 |
+
mask = mask.convert("RGB")
|
27 |
+
mask = mask.resize(image.size)
|
28 |
+
mask = np.array(mask)[:, :, 0]
|
29 |
+
|
30 |
+
# normalize the mask
|
31 |
+
mask_min = mask.min()
|
32 |
+
mask_max = mask.max()
|
33 |
+
mask = (mask - mask_min) / (mask_max - mask_min)
|
34 |
+
return mask
|
35 |
+
|
36 |
+
|
37 |
+
def get_masks(prompts, img, threhsold):
|
38 |
+
prompts = prompts.split(",")
|
39 |
+
masks = []
|
40 |
+
for prompt in prompts:
|
41 |
+
mask = process_image(img, prompt)
|
42 |
+
mask = mask > threhsold
|
43 |
+
masks.append(mask)
|
44 |
+
return masks
|
45 |
+
|
46 |
+
|
47 |
+
def extract_image(img, pos_prompts, neg_prompts, threshold):
|
48 |
+
positive_masks = get_masks(pos_prompts, img, threshold)
|
49 |
+
negative_masks = get_masks(neg_prompts, img, threshold)
|
50 |
+
|
51 |
+
# combine masks into one masks, logic OR
|
52 |
+
pos_mask = np.any(np.stack(positive_masks), axis=0)
|
53 |
+
neg_mask = np.any(np.stack(negative_masks), axis=0)
|
54 |
+
final_mask = pos_mask & ~neg_mask
|
55 |
+
|
56 |
+
# extract the final image
|
57 |
+
final_mask = Image.fromarray(final_mask.astype(np.uint8) * 255, "L")
|
58 |
+
inverse_mask = np.invert(final_mask)
|
59 |
+
output_image = Image.new("RGBA", img.size, (0, 0, 0, 0))
|
60 |
+
output_image.paste(img, mask=final_mask)
|
61 |
+
|
62 |
+
return output_image, final_mask, inverse_mask
|
63 |
+
|
64 |
+
|
65 |
+
title = "Interactive demo: zero-shot image segmentation with CLIPSeg"
|
66 |
+
description = "Demo for using CLIPSeg, a CLIP-based model for zero- and one-shot image segmentation. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds."
|
67 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10003'>CLIPSeg: Image Segmentation Using Text and Image Prompts</a> | <a href='https://huggingface.co/docs/transformers/main/en/model_doc/clipseg'>HuggingFace docs</a></p>"
|
68 |
+
|
69 |
+
|
70 |
+
with gr.Blocks() as demo:
|
71 |
+
gr.Markdown("# CLIPSeg: Image Segmentation Using Text and Image Prompts")
|
72 |
+
gr.Markdown(article)
|
73 |
+
gr.Markdown(description)
|
74 |
+
|
75 |
+
with gr.Row():
|
76 |
+
with gr.Column():
|
77 |
+
input_image = gr.Image(type="pil")
|
78 |
+
positive_prompts = gr.Textbox(
|
79 |
+
label="Please describe what you want to identify (comma separated)"
|
80 |
+
)
|
81 |
+
negative_prompts = gr.Textbox(
|
82 |
+
label="Please describe what you want to ignore (comma separated)"
|
83 |
+
)
|
84 |
+
|
85 |
+
input_slider_T = gr.Slider(
|
86 |
+
minimum=0, maximum=1, value=0.4, label="Threshold"
|
87 |
+
)
|
88 |
+
btn_process = gr.Button(label="Process")
|
89 |
+
|
90 |
+
with gr.Column():
|
91 |
+
output_image = gr.Image(label="Result")
|
92 |
+
output_mask = gr.Image(label="Mask")
|
93 |
+
inverse_mask = gr.Image(label="Inverse")
|
94 |
+
|
95 |
+
btn_process.click(
|
96 |
+
extract_image,
|
97 |
+
inputs=[
|
98 |
+
input_image,
|
99 |
+
positive_prompts,
|
100 |
+
negative_prompts,
|
101 |
+
input_slider_T,
|
102 |
+
],
|
103 |
+
outputs=[output_image, output_mask, inverse_mask],
|
104 |
+
api_name="mask"
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
demo.launch()
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python3-opencv
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers.git
|
2 |
+
torch
|
3 |
+
opencv-python
|