File size: 9,340 Bytes
01554a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import VotingClassifier
from sklearn.ensemble import VotingClassifier, HistGradientBoostingClassifier, ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
from Bio.SeqUtils.ProtParam import ProteinAnalysis
from Bio.SeqUtils.CheckSum import crc32
from Bio.SeqUtils.CodonUsage import CodonAdaptationIndex
from Bio.SeqUtils.CodonUsageIndices import SharpEcoliIndex
from Bio.SeqUtils import six_frame_translations
from Bio.Seq import Seq
from Bio import SeqIO
import gzip
from math import floor
from sklearn.metrics import accuracy_score
from orfipy_core import orfs
import sys
import matplotlib.pyplot as plt


def load_data(infile):
    """Load data from infile if it is in fasta format (after having unzipped it, if it is zipped)"""
    if infile.endswith(".gz"):  # If file is gzipped, unzip it
        y = gzip.open(infile, "rt", encoding="latin-1")
        # Read file as fasta if it is fasta
        if (
            infile.endswith(".fasta.gz")
            or infile.endswith(".fna.gz")
            or infile.endswith(".fas.gz")
            or infile.endswith(".fa.gz")
        ):
            records = SeqIO.parse(y, "fasta")
            sequences = {}
            for record in records:
                sequences.update({str(record.id): str(record.seq)})
            y.close()
            return sequences
        else:
            y.close()
            raise ValueError("File is the wrong format")
    # Read file directly as fasta if it is a not zipped fasta: handle also more uncommon extensions :-)
    elif (
        infile.endswith(".fasta")
        or infile.endswith(".fna")
        or infile.endswith(".fas")
        or infile.endswith(".fa")
    ):
        with open(infile, "r") as y:
            records = SeqIO.parse(y, "fasta")
            sequences = {}
            for record in records:
                sequences.update({str(record.id): str(record.seq)})
            y.close()
            return sequences
    else:
        raise ValueError("File is the wrong format")


def calculate_cai(dna, index=SharpEcoliIndex):
    cai = CodonAdaptationIndex()
    cai.set_cai_index(index)
    if len(dna) % 3 == 0:
        a = cai.cai_for_gene(dna)
    else:
        six_translated = six_frame_translations(dna)
        n = six_translated.split("\n")
        frames = {
            "0;F": n[5],
            "1;F": n[6],
            "2;F": n[7],
            "0;R": n[12],
            "1;R": n[11],
            "2;R": n[10],
        }
        ind = 0
        for i in list(frames.keys()):
            k = frames[i].replace(" ", "")
            if "M" in k and "*" in k:
                if i.split(";")[0] == "F" and k.index("M") < k.index("*"):
                    if len(k) <= len(dna) / 3:
                        ind = int(i.split("")[0])
                        break
                elif i.split(";")[0] == "R" and k.index("M") > k.index("*"):
                    if len(k) <= len(dna) / 3:
                        ind = len(dna) - int(i.split("")[0])
                        break
        if ind == 0:
            cods = 3 * floor(len(dna) / 3)
            dna = dna[:cods]
            a = cai.cai_for_gene(dna)
        elif 1 <= ind <= 2:
            if len(dna[ind:]) % 3 == 0:
                dna = dna[ind:]
            else:
                cods = 3 * floor((len(dna) - ind) / 3)
                dna = dna[ind : cods + ind]
                a = cai.cai_for_gene(dna)
        else:
            if len(dna[:ind]) % 3 == 0:
                dna = dna[ind:]
            else:
                cods = 3 * floor((len(dna) - ind) / 3)
                dna = dna[:cods]
                a = cai.cai_for_gene(dna)
    return a


def checksum(dna):
    return crc32(dna)


def hidrophobicity(dna):
    protein_sequence = str(Seq(dna).translate())
    protein_sequence = protein_sequence.replace("*", "")
    hydrophobicity_score = ProteinAnalysis(protein_sequence).gravy()
    return hydrophobicity_score


def isoelectric_pt(dna):
    protein_sequence = str(Seq(dna).translate())
    protein_sequence = protein_sequence.replace("*", "")
    isoelectric = ProteinAnalysis(protein_sequence).isoelectric_point()
    return isoelectric


def aromatic(dna):
    protein_sequence = str(Seq(dna).translate())
    protein_sequence = protein_sequence.replace("*", "")
    arom = ProteinAnalysis(protein_sequence).aromaticity()
    return arom


def instable(dna):
    protein_sequence = str(Seq(dna).translate())
    protein_sequence = protein_sequence.replace("*", "")
    inst = ProteinAnalysis(protein_sequence).instability_index()
    return inst


def weight(dna):
    protein_sequence = str(Seq(dna).translate())
    protein_sequence = protein_sequence.replace("*", "")
    wgt = ProteinAnalysis(protein_sequence).molecular_weight()
    return wgt


def sec_struct(dna):
    protein_sequence = str(Seq(dna).translate())
    protein_sequence = protein_sequence.replace("*", "")
    second_struct = ProteinAnalysis(protein_sequence).secondary_structure_fraction()
    return ",".join([str(s) for s in second_struct])


def mol_ext(dna):
    protein_sequence = str(Seq(dna).translate())
    protein_sequence = protein_sequence.replace("*", "")
    molar_ext = ProteinAnalysis(protein_sequence).molar_extinction_coefficient()
    return ",".join([str(s) for s in molar_ext])


def longest_orf(coding):
    keys_M_starting = [
        key
        for key in list(coding.keys())
        if str(Seq(coding[key]).translate()).startswith("M")
    ]
    M_starting = [
        seq
        for seq in list(coding.values())
        if str(Seq(seq).translate()).startswith("M")
    ]
    lengths = [len(seq) for seq in M_starting]
    max_ind = lengths.index(max(lengths))
    return {keys_M_starting[max_ind]: M_starting[max_ind]}


def predict_orf(seq, minlen=45, maxlen=18000, longest_M_starting_orf_only=True):
    ls = orfs(seq, minlen=minlen, maxlen=maxlen)
    coding = {}
    count = 0
    for start, stop, strand, description in ls:
        count += 1
        coding.update({f"ORF.{count}": seq[int(start) : int(stop)]})
    if longest_M_starting_orf_only:
        print(
            "\n---------------------------\nWarning: option longest_M_starting_orf_only is set to True and thus you will get only the longest M-starting ORF; to get all the ORFs, set it to False\n---------------------------\n",
            file=sys.stderr,
        )
        return longest_orf(coding)
    return coding


def process_dna(fasta_file):
    fas = load_data(fasta_file)
    seqs = [seq for seq in list(fas.values())]
    heads = [seq for seq in list(fas.keys())]
    data = {}
    proteins = {}
    for i in range(len(seqs)):
        coding = predict_orf(seqs[i])
        open_reading_frames = list(coding.keys())
        for key in open_reading_frames:
            head = f"{heads[i]}.{key}"
            proteins.update({head: str(Seq(coding[key]).translate())})
            cai = calculate_cai(coding[key])
            cksm = checksum(coding[key])
            hydr = hidrophobicity(coding[key])
            isl = isoelectric_pt(coding[key])
            arm = aromatic(coding[key])
            inst = instable(coding[key])
            mw = weight(coding[key])
            se_st = sec_struct(coding[key]).split(",")
            se_st1 = se_st[0]
            se_st2 = se_st[1]
            se_st3 = se_st[2]
            me = mol_ext(coding[key]).split(",")
            me1 = me[0]
            me2 = me[1]
            n = pd.DataFrame(
                {
                    "CAI": [cai],
                    "CHECKSUM": [cksm],
                    "HIDROPHOBICITY": [hydr],
                    "ISOELECTRIC": [isl],
                    "AROMATIC": [arm],
                    "INSTABLE": [inst],
                    "MW": [mw],
                    "HELIX": [se_st1],
                    "TURN": [se_st2],
                    "SHEET": [se_st3],
                    "MOL_EXT_RED": [me1],
                    "MOL_EXT_OX": [me2],
                }
            )
            data.update({head: n})
    return data, proteins

if __name__ == "__main__":
    print("Loading data...")
    # Load the data from the CSV file
    data = pd.read_csv("../../data/scerevisiae.csv")
    print("Loaded data")

    print("Generating training and test data...")
    # Features
    X = data.iloc[:, 1:]

    # Labels
    y = data["ORF_TYPE"]


    # Split the data into training and testing sets
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.2, random_state=42
    )
    print("Generated training and test data")

    print("Building and training the model...")
    # Create and train the Random Forest classifier
    clf4 = DecisionTreeClassifier()
    clf7 = HistGradientBoostingClassifier()
    clf8 = ExtraTreesClassifier()
    classifier = VotingClassifier([('dt', clf4), ('hgb', clf7), ('etc', clf8)], voting='hard')

    model = classifier.fit(X, y)  # Uncomment this line if clf needs training


    # Make predictions on the test set
    y_pred = model.predict(X)

    # Evaluate the accuracy of the model
    accuracy = accuracy_score(y, y_pred)
    print(f"Accuracy: {accuracy}")

    from joblib import dump

    print("Saving model...")
    dump(model, "SacCerML.joblib")
    print("Saved")

    print("All done")