Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
import tempfile
|
5 |
import os
|
6 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# ---- Page Configuration ----
|
9 |
st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
|
@@ -11,75 +103,112 @@ st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
|
|
11 |
st.title("📰 Fake News & Deepfake Detection Tool")
|
12 |
st.write("🚀 Detect Fake News, Deepfake Images, and Videos using AI")
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# ---- Fake News Detection Section ----
|
15 |
st.subheader("📝 Fake News Detection")
|
16 |
news_input = st.text_area("Enter News Text:", "Type here...")
|
17 |
|
18 |
if st.button("Check News"):
|
19 |
st.write("🔍 Processing...")
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# ---- Deepfake Image Detection Section ----
|
23 |
st.subheader("📸 Deepfake Image Detection")
|
24 |
uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
|
25 |
|
26 |
-
def compress_image(image, quality=90, max_size=(300, 300)): # ✅ High clarity image
|
27 |
-
img = Image.open(image).convert("RGB")
|
28 |
-
img.thumbnail(max_size)
|
29 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
|
30 |
-
img.save(temp_file.name, "JPEG", quality=quality)
|
31 |
-
return temp_file.name
|
32 |
-
|
33 |
if uploaded_image is not None:
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
36 |
if st.button("Analyze Image"):
|
37 |
st.write("🔍 Processing...")
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# ---- Deepfake Video Detection Section ----
|
41 |
st.subheader("🎥 Deepfake Video Detection")
|
42 |
uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])
|
43 |
|
44 |
-
def
|
45 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
46 |
-
|
47 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video:
|
48 |
-
temp_video.write(video.read())
|
49 |
-
video_path = temp_video.name
|
50 |
-
|
51 |
cap = cv2.VideoCapture(video_path)
|
|
|
52 |
|
53 |
-
if not cap.isOpened():
|
54 |
-
st.error("❌ Error: Unable to read video!")
|
55 |
-
return None
|
56 |
-
|
57 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
58 |
-
|
59 |
-
# ✅ New Resolution (100x80) & 15 FPS
|
60 |
-
frame_width = 50
|
61 |
-
frame_height = 80
|
62 |
-
out = cv2.VideoWriter(temp_file.name, fourcc, 15.0, (frame_width, frame_height))
|
63 |
-
|
64 |
while cap.isOpened():
|
65 |
ret, frame = cap.read()
|
66 |
if not ret:
|
67 |
break
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
75 |
|
76 |
if uploaded_video is not None:
|
77 |
-
st.video(uploaded_video)
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
st.markdown("🔹 **Developed for Fake News & Deepfake Detection Hackathon**")
|
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import numpy as np
|
3 |
+
# import cv2
|
4 |
+
# import tempfile
|
5 |
+
# import os
|
6 |
+
# from PIL import Image
|
7 |
+
|
8 |
+
# # ---- Page Configuration ----
|
9 |
+
# st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
|
10 |
+
|
11 |
+
# st.title("📰 Fake News & Deepfake Detection Tool")
|
12 |
+
# st.write("🚀 Detect Fake News, Deepfake Images, and Videos using AI")
|
13 |
+
|
14 |
+
# # ---- Fake News Detection Section ----
|
15 |
+
# st.subheader("📝 Fake News Detection")
|
16 |
+
# news_input = st.text_area("Enter News Text:", "Type here...")
|
17 |
+
|
18 |
+
# if st.button("Check News"):
|
19 |
+
# st.write("🔍 Processing...")
|
20 |
+
# st.success("✅ Result: This news is FAKE.") # Replace with ML Model
|
21 |
+
|
22 |
+
# # ---- Deepfake Image Detection Section ----
|
23 |
+
# st.subheader("📸 Deepfake Image Detection")
|
24 |
+
# uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
|
25 |
+
|
26 |
+
# def compress_image(image, quality=90, max_size=(300, 300)): # ✅ High clarity image
|
27 |
+
# img = Image.open(image).convert("RGB")
|
28 |
+
# img.thumbnail(max_size)
|
29 |
+
# temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
|
30 |
+
# img.save(temp_file.name, "JPEG", quality=quality)
|
31 |
+
# return temp_file.name
|
32 |
+
|
33 |
+
# if uploaded_image is not None:
|
34 |
+
# compressed_image_path = compress_image(uploaded_image)
|
35 |
+
# st.image(compressed_image_path, caption="🖼️ Compressed & Clear Image", use_column_width=True)
|
36 |
+
# if st.button("Analyze Image"):
|
37 |
+
# st.write("🔍 Processing...")
|
38 |
+
# st.error("⚠️ Result: This image is a Deepfake.") # Replace with model
|
39 |
+
|
40 |
+
# # ---- Deepfake Video Detection Section ----
|
41 |
+
# st.subheader("🎥 Deepfake Video Detection")
|
42 |
+
# uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])
|
43 |
+
|
44 |
+
# def compress_video(video):
|
45 |
+
# temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
46 |
+
|
47 |
+
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video:
|
48 |
+
# temp_video.write(video.read())
|
49 |
+
# video_path = temp_video.name
|
50 |
+
|
51 |
+
# cap = cv2.VideoCapture(video_path)
|
52 |
+
|
53 |
+
# if not cap.isOpened():
|
54 |
+
# st.error("❌ Error: Unable to read video!")
|
55 |
+
# return None
|
56 |
+
|
57 |
+
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
58 |
+
|
59 |
+
# # ✅ New Resolution (100x80) & 15 FPS
|
60 |
+
# frame_width = 50
|
61 |
+
# frame_height = 80
|
62 |
+
# out = cv2.VideoWriter(temp_file.name, fourcc, 15.0, (frame_width, frame_height))
|
63 |
+
|
64 |
+
# while cap.isOpened():
|
65 |
+
# ret, frame = cap.read()
|
66 |
+
# if not ret:
|
67 |
+
# break
|
68 |
+
# frame = cv2.resize(frame, (frame_width, frame_height))
|
69 |
+
# out.write(frame)
|
70 |
+
|
71 |
+
# cap.release()
|
72 |
+
# out.release()
|
73 |
+
|
74 |
+
# return temp_file.name
|
75 |
+
|
76 |
+
# if uploaded_video is not None:
|
77 |
+
# st.video(uploaded_video) # ✅ فوراً ویڈیو اپ لوڈ ہونے کے بعد دکھائیں
|
78 |
+
# compressed_video_path = compress_video(uploaded_video)
|
79 |
+
# if compressed_video_path:
|
80 |
+
# st.video(compressed_video_path) # ✅ کمپریسڈ ویڈیو بھی دکھائیں
|
81 |
+
# if st.button("Analyze Video"):
|
82 |
+
# st.write("🔍 Processing...")
|
83 |
+
# st.warning("⚠️ Result: This video contains Deepfake elements.") # Replace with model
|
84 |
+
|
85 |
+
# st.markdown("🔹 **Developed for Fake News & Deepfake Detection Hackathon**")
|
86 |
+
|
87 |
import streamlit as st
|
88 |
import numpy as np
|
89 |
import cv2
|
90 |
import tempfile
|
91 |
import os
|
92 |
from PIL import Image
|
93 |
+
import tensorflow as tf
|
94 |
+
from transformers import pipeline
|
95 |
+
from tensorflow.keras.applications import Xception, EfficientNetB7
|
96 |
+
from tensorflow.keras.models import Model
|
97 |
+
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
|
98 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
99 |
|
100 |
# ---- Page Configuration ----
|
101 |
st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
|
|
|
103 |
st.title("📰 Fake News & Deepfake Detection Tool")
|
104 |
st.write("🚀 Detect Fake News, Deepfake Images, and Videos using AI")
|
105 |
|
106 |
+
# Load Models
|
107 |
+
fake_news_detector = pipeline("text-classification", model="microsoft/deberta-v3-base")
|
108 |
+
|
109 |
+
# Load Deepfake Detection Models
|
110 |
+
base_model_image = Xception(weights="imagenet", include_top=False)
|
111 |
+
base_model_image.trainable = False # Freeze base layers
|
112 |
+
x = GlobalAveragePooling2D()(base_model_image.output)
|
113 |
+
x = Dense(1024, activation="relu")(x)
|
114 |
+
x = Dense(1, activation="sigmoid")(x) # Sigmoid for probability output
|
115 |
+
deepfake_image_model = Model(inputs=base_model_image.input, outputs=x)
|
116 |
+
|
117 |
+
base_model_video = EfficientNetB7(weights="imagenet", include_top=False)
|
118 |
+
base_model_video.trainable = False
|
119 |
+
x = GlobalAveragePooling2D()(base_model_video.output)
|
120 |
+
x = Dense(1024, activation="relu")(x)
|
121 |
+
x = Dense(1, activation="sigmoid")(x)
|
122 |
+
deepfake_video_model = Model(inputs=base_model_video.input, outputs=x)
|
123 |
+
|
124 |
+
# Function to Preprocess Image
|
125 |
+
def preprocess_image(image_path):
|
126 |
+
img = load_img(image_path, target_size=(299, 299)) # Xception expects 299x299
|
127 |
+
img = img_to_array(img)
|
128 |
+
img = np.expand_dims(img, axis=0)
|
129 |
+
img /= 255.0 # Normalize pixel values
|
130 |
+
return img
|
131 |
+
|
132 |
+
# Function to Detect Deepfake Image
|
133 |
+
def detect_deepfake_image(image_path):
|
134 |
+
image = preprocess_image(image_path)
|
135 |
+
prediction = deepfake_image_model.predict(image)[0][0]
|
136 |
+
confidence = round(float(prediction), 2)
|
137 |
+
label = "FAKE" if confidence > 0.5 else "REAL"
|
138 |
+
return {"label": label, "score": confidence}
|
139 |
+
|
140 |
# ---- Fake News Detection Section ----
|
141 |
st.subheader("📝 Fake News Detection")
|
142 |
news_input = st.text_area("Enter News Text:", "Type here...")
|
143 |
|
144 |
if st.button("Check News"):
|
145 |
st.write("🔍 Processing...")
|
146 |
+
prediction = fake_news_detector(news_input)
|
147 |
+
label = prediction[0]['label']
|
148 |
+
confidence = prediction[0]['score']
|
149 |
+
|
150 |
+
if label == "FAKE":
|
151 |
+
st.error(f"⚠️ Result: This news is FAKE. (Confidence: {confidence:.2f})")
|
152 |
+
else:
|
153 |
+
st.success(f"✅ Result: This news is REAL. (Confidence: {confidence:.2f})")
|
154 |
|
155 |
# ---- Deepfake Image Detection Section ----
|
156 |
st.subheader("📸 Deepfake Image Detection")
|
157 |
uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
if uploaded_image is not None:
|
160 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
|
161 |
+
img = Image.open(uploaded_image).convert("RGB")
|
162 |
+
img.save(temp_file.name, "JPEG")
|
163 |
+
st.image(temp_file.name, caption="🖼️ Uploaded Image", use_column_width=True)
|
164 |
+
|
165 |
if st.button("Analyze Image"):
|
166 |
st.write("🔍 Processing...")
|
167 |
+
result = detect_deepfake_image(temp_file.name)
|
168 |
+
|
169 |
+
if result["label"] == "FAKE":
|
170 |
+
st.error(f"⚠️ Result: This image is a Deepfake. (Confidence: {result['score']:.2f})")
|
171 |
+
else:
|
172 |
+
st.success(f"✅ Result: This image is Real. (Confidence: {1 - result['score']:.2f})")
|
173 |
|
174 |
# ---- Deepfake Video Detection Section ----
|
175 |
st.subheader("🎥 Deepfake Video Detection")
|
176 |
uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])
|
177 |
|
178 |
+
def detect_deepfake_video(video_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
cap = cv2.VideoCapture(video_path)
|
180 |
+
frame_scores = []
|
181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
while cap.isOpened():
|
183 |
ret, frame = cap.read()
|
184 |
if not ret:
|
185 |
break
|
186 |
+
|
187 |
+
frame_path = "temp_frame.jpg"
|
188 |
+
cv2.imwrite(frame_path, frame)
|
189 |
+
result = detect_deepfake_image(frame_path)
|
190 |
+
frame_scores.append(result["score"])
|
191 |
+
os.remove(frame_path)
|
192 |
|
193 |
+
cap.release()
|
194 |
+
avg_score = np.mean(frame_scores)
|
195 |
+
final_label = "FAKE" if avg_score > 0.5 else "REAL"
|
196 |
+
return {"label": final_label, "score": round(float(avg_score), 2)}
|
197 |
|
198 |
if uploaded_video is not None:
|
199 |
+
st.video(uploaded_video)
|
200 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
201 |
+
with open(temp_file.name, "wb") as f:
|
202 |
+
f.write(uploaded_video.read())
|
203 |
+
|
204 |
+
if st.button("Analyze Video"):
|
205 |
+
st.write("🔍 Processing...")
|
206 |
+
result = detect_deepfake_video(temp_file.name)
|
207 |
+
|
208 |
+
if result["label"] == "FAKE":
|
209 |
+
st.warning(f"⚠️ Result: This video contains Deepfake elements. (Confidence: {result['score']:.2f})")
|
210 |
+
else:
|
211 |
+
st.success(f"✅ Result: This video is Real. (Confidence: {1 - result['score']:.2f})")
|
212 |
|
213 |
st.markdown("🔹 **Developed for Fake News & Deepfake Detection Hackathon**")
|
214 |
+
|