Update app.py
Browse files
app.py
CHANGED
@@ -1,89 +1,3 @@
|
|
1 |
-
# import streamlit as st
|
2 |
-
# import numpy as np
|
3 |
-
# import cv2
|
4 |
-
# import tempfile
|
5 |
-
# import os
|
6 |
-
# from PIL import Image
|
7 |
-
|
8 |
-
# # ---- Page Configuration ----
|
9 |
-
# st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
|
10 |
-
|
11 |
-
# st.title("π° Fake News & Deepfake Detection Tool")
|
12 |
-
# st.write("π Detect Fake News, Deepfake Images, and Videos using AI")
|
13 |
-
|
14 |
-
# # ---- Fake News Detection Section ----
|
15 |
-
# st.subheader("π Fake News Detection")
|
16 |
-
# news_input = st.text_area("Enter News Text:", "Type here...")
|
17 |
-
|
18 |
-
# if st.button("Check News"):
|
19 |
-
# st.write("π Processing...")
|
20 |
-
# st.success("β
Result: This news is FAKE.") # Replace with ML Model
|
21 |
-
|
22 |
-
# # ---- Deepfake Image Detection Section ----
|
23 |
-
# st.subheader("πΈ Deepfake Image Detection")
|
24 |
-
# uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
|
25 |
-
|
26 |
-
# def compress_image(image, quality=90, max_size=(300, 300)): # β
High clarity image
|
27 |
-
# img = Image.open(image).convert("RGB")
|
28 |
-
# img.thumbnail(max_size)
|
29 |
-
# temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
|
30 |
-
# img.save(temp_file.name, "JPEG", quality=quality)
|
31 |
-
# return temp_file.name
|
32 |
-
|
33 |
-
# if uploaded_image is not None:
|
34 |
-
# compressed_image_path = compress_image(uploaded_image)
|
35 |
-
# st.image(compressed_image_path, caption="πΌοΈ Compressed & Clear Image", use_column_width=True)
|
36 |
-
# if st.button("Analyze Image"):
|
37 |
-
# st.write("π Processing...")
|
38 |
-
# st.error("β οΈ Result: This image is a Deepfake.") # Replace with model
|
39 |
-
|
40 |
-
# # ---- Deepfake Video Detection Section ----
|
41 |
-
# st.subheader("π₯ Deepfake Video Detection")
|
42 |
-
# uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])
|
43 |
-
|
44 |
-
# def compress_video(video):
|
45 |
-
# temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
46 |
-
|
47 |
-
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video:
|
48 |
-
# temp_video.write(video.read())
|
49 |
-
# video_path = temp_video.name
|
50 |
-
|
51 |
-
# cap = cv2.VideoCapture(video_path)
|
52 |
-
|
53 |
-
# if not cap.isOpened():
|
54 |
-
# st.error("β Error: Unable to read video!")
|
55 |
-
# return None
|
56 |
-
|
57 |
-
# fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
58 |
-
|
59 |
-
# # β
New Resolution (100x80) & 15 FPS
|
60 |
-
# frame_width = 50
|
61 |
-
# frame_height = 80
|
62 |
-
# out = cv2.VideoWriter(temp_file.name, fourcc, 15.0, (frame_width, frame_height))
|
63 |
-
|
64 |
-
# while cap.isOpened():
|
65 |
-
# ret, frame = cap.read()
|
66 |
-
# if not ret:
|
67 |
-
# break
|
68 |
-
# frame = cv2.resize(frame, (frame_width, frame_height))
|
69 |
-
# out.write(frame)
|
70 |
-
|
71 |
-
# cap.release()
|
72 |
-
# out.release()
|
73 |
-
|
74 |
-
# return temp_file.name
|
75 |
-
|
76 |
-
# if uploaded_video is not None:
|
77 |
-
# st.video(uploaded_video) # β
ΩΩΨ±Ψ§Ω ΩΫΪΫΩ Ψ§ΩΎ ΩΩΪ ΫΩΩΫ Ϊ©Ϋ Ψ¨ΨΉΨ― Ψ―Ϊ©ΪΎΨ§Ψ¦ΫΪΊ
|
78 |
-
# compressed_video_path = compress_video(uploaded_video)
|
79 |
-
# if compressed_video_path:
|
80 |
-
# st.video(compressed_video_path) # β
Ϊ©Ω
ΩΎΨ±ΫΨ³Ϊ ΩΫΪΫΩ Ψ¨ΪΎΫ Ψ―Ϊ©ΪΎΨ§Ψ¦ΫΪΊ
|
81 |
-
# if st.button("Analyze Video"):
|
82 |
-
# st.write("π Processing...")
|
83 |
-
# st.warning("β οΈ Result: This video contains Deepfake elements.") # Replace with model
|
84 |
-
|
85 |
-
# st.markdown("πΉ **Developed for Fake News & Deepfake Detection Hackathon**")
|
86 |
-
|
87 |
import streamlit as st
|
88 |
import numpy as np
|
89 |
import cv2
|
@@ -321,56 +235,7 @@ if uploaded_image is not None:
|
|
321 |
else:
|
322 |
st.error(f"β οΈ Result: This image is a Deepfake. (Confidence: {result['score']:.2f})")
|
323 |
|
324 |
-
|
325 |
-
# st.subheader("π₯ Deepfake Video Detection")
|
326 |
-
# uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])
|
327 |
-
|
328 |
-
# def detect_deepfake_video(video_path):
|
329 |
-
# cap = cv2.VideoCapture(video_path)
|
330 |
-
# frame_scores = []
|
331 |
-
# frame_count = 0
|
332 |
-
|
333 |
-
# while cap.isOpened():
|
334 |
-
# ret, frame = cap.read()
|
335 |
-
# if not ret:
|
336 |
-
# break
|
337 |
-
|
338 |
-
# if frame_count % 10 == 0: # ΫΨ± 10ΩΫΪΊ ΩΨ±ΫΩ
Ϊ©Ψ§ ΨͺΨ¬Ψ²ΫΫ Ϊ©Ψ±ΫΪΊ
|
339 |
-
# frame_path = "temp_frame.jpg"
|
340 |
-
# cv2.imwrite(frame_path, frame)
|
341 |
-
# result = detect_deepfake_image(frame_path)
|
342 |
-
# frame_scores.append(result["score"])
|
343 |
-
# os.remove(frame_path)
|
344 |
-
|
345 |
-
# frame_count += 1
|
346 |
-
|
347 |
-
# cap.release()
|
348 |
-
|
349 |
-
# if not frame_scores:
|
350 |
-
# return {"label": "UNKNOWN", "score": 0.0} # Ψ§Ϊ―Ψ± Ϊ©ΩΨ¦Ϋ ΩΨ±ΫΩ
ΩΎΨ±Ψ§Ψ³ΫΨ³ ΩΫ ΫΩ Ψ³Ϊ©Ϋ
|
351 |
-
|
352 |
-
# avg_score = np.mean(frame_scores)
|
353 |
-
# confidence = round(float(avg_score), 2)
|
354 |
-
# final_label = "FAKE" if avg_score > 0.5 else "REAL"
|
355 |
-
|
356 |
-
# return {"label": final_label, "score": confidence}
|
357 |
-
|
358 |
-
# if uploaded_video is not None:
|
359 |
-
# st.video(uploaded_video)
|
360 |
-
# temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
361 |
-
# with open(temp_file.name, "wb") as f:
|
362 |
-
# f.write(uploaded_video.read())
|
363 |
-
|
364 |
-
# if st.button("Analyze Video"):
|
365 |
-
# st.write("π Processing... Please wait.")
|
366 |
-
# result = detect_deepfake_video(temp_file.name)
|
367 |
-
|
368 |
-
# if result["label"] == "FAKE":
|
369 |
-
# st.error(f"β οΈ Deepfake Detected! This video appears to be FAKE. (Confidence: {result['score']:.2f})")
|
370 |
-
# elif result["label"] == "REAL":
|
371 |
-
# st.success(f"β
This video appears to be REAL. (Confidence: {1 - result['score']:.2f})")
|
372 |
-
# else:
|
373 |
-
# st.warning("β οΈ Unable to analyze the video. Please try a different file.")
|
374 |
st.subheader("π₯ Deepfake Video Detection")
|
375 |
|
376 |
# Upload video file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
import cv2
|
|
|
235 |
else:
|
236 |
st.error(f"β οΈ Result: This image is a Deepfake. (Confidence: {result['score']:.2f})")
|
237 |
|
238 |
+
# ---- Deepfake Video Detection Section ----
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
st.subheader("π₯ Deepfake Video Detection")
|
240 |
|
241 |
# Upload video file
|