Update app.py
Browse files
app.py
CHANGED
@@ -103,54 +103,68 @@ st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
|
|
103 |
st.title("π° Fake News & Deepfake Detection Tool")
|
104 |
st.write("π Detect Fake News, Deepfake Images, and Videos using AI")
|
105 |
|
106 |
-
# Load
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
x =
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
def preprocess_image(image_path):
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
prediction = deepfake_image_model.predict(image)[0][0]
|
136 |
-
confidence = round(float(prediction), 2)
|
137 |
-
label = "FAKE" if confidence > 0.5 else "REAL"
|
138 |
-
return {"label": label, "score": confidence}
|
139 |
|
140 |
# ---- Fake News Detection Section ----
|
141 |
st.subheader("π Fake News Detection")
|
142 |
news_input = st.text_area("Enter News Text:", placeholder="Type here...")
|
143 |
|
144 |
if st.button("Check News"):
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
152 |
else:
|
153 |
-
st.
|
|
|
154 |
# ---- Deepfake Image Detection Section ----
|
155 |
st.subheader("πΈ Deepfake Image Detection")
|
156 |
uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
|
@@ -160,16 +174,22 @@ if uploaded_image is not None:
|
|
160 |
img = Image.open(uploaded_image).convert("RGB")
|
161 |
img.save(temp_file.name, "JPEG")
|
162 |
st.image(temp_file.name, caption="πΌοΈ Uploaded Image", use_column_width=True)
|
163 |
-
|
164 |
if st.button("Analyze Image"):
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
# ---- Deepfake Video Detection Section ----
|
175 |
st.subheader("π₯ Deepfake Video Detection")
|
@@ -179,18 +199,28 @@ def detect_deepfake_video(video_path):
|
|
179 |
cap = cv2.VideoCapture(video_path)
|
180 |
frame_scores = []
|
181 |
|
|
|
|
|
|
|
|
|
182 |
while cap.isOpened():
|
183 |
ret, frame = cap.read()
|
184 |
if not ret:
|
185 |
break
|
186 |
-
|
187 |
frame_path = "temp_frame.jpg"
|
188 |
cv2.imwrite(frame_path, frame)
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
191 |
os.remove(frame_path)
|
192 |
|
193 |
cap.release()
|
|
|
|
|
|
|
194 |
avg_score = np.mean(frame_scores)
|
195 |
final_label = "FAKE" if avg_score > 0.5 else "REAL"
|
196 |
return {"label": final_label, "score": round(float(avg_score), 2)}
|
@@ -200,15 +230,19 @@ if uploaded_video is not None:
|
|
200 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
201 |
with open(temp_file.name, "wb") as f:
|
202 |
f.write(uploaded_video.read())
|
203 |
-
|
204 |
if st.button("Analyze Video"):
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
210 |
else:
|
211 |
-
st.
|
212 |
|
213 |
st.markdown("πΉ **Developed for Fake News & Deepfake Detection Hackathon**")
|
214 |
-
|
|
|
103 |
st.title("π° Fake News & Deepfake Detection Tool")
|
104 |
st.write("π Detect Fake News, Deepfake Images, and Videos using AI")
|
105 |
|
106 |
+
# ---- Load Fake News Detector ----
|
107 |
+
try:
|
108 |
+
fake_news_detector = pipeline("text-classification", model="microsoft/deberta-v3-base")
|
109 |
+
except Exception as e:
|
110 |
+
st.error(f"Error loading fake news model: {e}")
|
111 |
+
fake_news_detector = None
|
112 |
+
|
113 |
+
# ---- Load Deepfake Detection Models ----
|
114 |
+
try:
|
115 |
+
base_model_image = Xception(weights="imagenet", include_top=False)
|
116 |
+
base_model_image.trainable = False
|
117 |
+
x = GlobalAveragePooling2D()(base_model_image.output)
|
118 |
+
x = Dense(1024, activation="relu")(x)
|
119 |
+
x = Dense(1, activation="sigmoid")(x)
|
120 |
+
deepfake_image_model = Model(inputs=base_model_image.input, outputs=x)
|
121 |
+
except Exception as e:
|
122 |
+
st.error(f"Error loading image model: {e}")
|
123 |
+
deepfake_image_model = None
|
124 |
+
|
125 |
+
try:
|
126 |
+
base_model_video = EfficientNetB7(weights="imagenet", include_top=False)
|
127 |
+
base_model_video.trainable = False
|
128 |
+
x = GlobalAveragePooling2D()(base_model_video.output)
|
129 |
+
x = Dense(1024, activation="relu")(x)
|
130 |
+
x = Dense(1, activation="sigmoid")(x)
|
131 |
+
deepfake_video_model = Model(inputs=base_model_video.input, outputs=x)
|
132 |
+
except Exception as e:
|
133 |
+
st.error(f"Error loading video model: {e}")
|
134 |
+
deepfake_video_model = None
|
135 |
+
|
136 |
+
# ---- Image Preprocessing Function ----
|
137 |
def preprocess_image(image_path):
|
138 |
+
try:
|
139 |
+
img = load_img(image_path, target_size=(299, 299)) # Xception requires 299x299
|
140 |
+
img = img_to_array(img)
|
141 |
+
img = np.expand_dims(img, axis=0)
|
142 |
+
img /= 255.0 # Normalize
|
143 |
+
return img
|
144 |
+
except Exception as e:
|
145 |
+
st.error(f"Error processing image: {e}")
|
146 |
+
return None
|
|
|
|
|
|
|
|
|
147 |
|
148 |
# ---- Fake News Detection Section ----
|
149 |
st.subheader("π Fake News Detection")
|
150 |
news_input = st.text_area("Enter News Text:", placeholder="Type here...")
|
151 |
|
152 |
if st.button("Check News"):
|
153 |
+
if not news_input.strip():
|
154 |
+
st.warning("β οΈ Please enter news text before checking.")
|
155 |
+
elif fake_news_detector:
|
156 |
+
st.write("π Processing...")
|
157 |
+
prediction = fake_news_detector(news_input)
|
158 |
+
label = prediction[0]['label']
|
159 |
+
confidence = prediction[0]['score']
|
160 |
+
|
161 |
+
if label.lower() == "fake":
|
162 |
+
st.error(f"β οΈ Result: This news is FAKE. (Confidence: {confidence:.2f})")
|
163 |
+
else:
|
164 |
+
st.success(f"β
Result: This news is REAL. (Confidence: {confidence:.2f})")
|
165 |
else:
|
166 |
+
st.error("Fake news detection model not loaded.")
|
167 |
+
|
168 |
# ---- Deepfake Image Detection Section ----
|
169 |
st.subheader("πΈ Deepfake Image Detection")
|
170 |
uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
|
|
|
174 |
img = Image.open(uploaded_image).convert("RGB")
|
175 |
img.save(temp_file.name, "JPEG")
|
176 |
st.image(temp_file.name, caption="πΌοΈ Uploaded Image", use_column_width=True)
|
177 |
+
|
178 |
if st.button("Analyze Image"):
|
179 |
+
if deepfake_image_model:
|
180 |
+
st.write("π Processing...")
|
181 |
+
image_data = preprocess_image(temp_file.name)
|
182 |
+
if image_data is not None:
|
183 |
+
prediction = deepfake_image_model.predict(image_data)[0][0]
|
184 |
+
confidence = round(float(prediction), 2)
|
185 |
+
label = "FAKE" if confidence > 0.5 else "REAL"
|
186 |
+
|
187 |
+
if label == "REAL":
|
188 |
+
st.success(f"β
Result: This image is Real. (Confidence: {1 - confidence:.2f})")
|
189 |
+
else:
|
190 |
+
st.error(f"β οΈ Result: This image is a Deepfake. (Confidence: {confidence:.2f})")
|
191 |
+
else:
|
192 |
+
st.error("Deepfake image detection model not loaded.")
|
193 |
|
194 |
# ---- Deepfake Video Detection Section ----
|
195 |
st.subheader("π₯ Deepfake Video Detection")
|
|
|
199 |
cap = cv2.VideoCapture(video_path)
|
200 |
frame_scores = []
|
201 |
|
202 |
+
if not cap.isOpened():
|
203 |
+
st.error("Error: Cannot open video file.")
|
204 |
+
return None
|
205 |
+
|
206 |
while cap.isOpened():
|
207 |
ret, frame = cap.read()
|
208 |
if not ret:
|
209 |
break
|
210 |
+
|
211 |
frame_path = "temp_frame.jpg"
|
212 |
cv2.imwrite(frame_path, frame)
|
213 |
+
processed_image = preprocess_image(frame_path)
|
214 |
+
|
215 |
+
if processed_image is not None:
|
216 |
+
prediction = deepfake_image_model.predict(processed_image)[0][0]
|
217 |
+
frame_scores.append(prediction)
|
218 |
os.remove(frame_path)
|
219 |
|
220 |
cap.release()
|
221 |
+
if not frame_scores:
|
222 |
+
return None
|
223 |
+
|
224 |
avg_score = np.mean(frame_scores)
|
225 |
final_label = "FAKE" if avg_score > 0.5 else "REAL"
|
226 |
return {"label": final_label, "score": round(float(avg_score), 2)}
|
|
|
230 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
231 |
with open(temp_file.name, "wb") as f:
|
232 |
f.write(uploaded_video.read())
|
233 |
+
|
234 |
if st.button("Analyze Video"):
|
235 |
+
if deepfake_video_model:
|
236 |
+
st.write("π Processing...")
|
237 |
+
result = detect_deepfake_video(temp_file.name)
|
238 |
+
|
239 |
+
if result is None:
|
240 |
+
st.error("β οΈ Unable to analyze video.")
|
241 |
+
elif result["label"] == "FAKE":
|
242 |
+
st.warning(f"β οΈ Result: This video contains Deepfake elements. (Confidence: {result['score']:.2f})")
|
243 |
+
else:
|
244 |
+
st.success(f"β
Result: This video is Real. (Confidence: {1 - result['score']:.2f})")
|
245 |
else:
|
246 |
+
st.error("Deepfake video detection model not loaded.")
|
247 |
|
248 |
st.markdown("πΉ **Developed for Fake News & Deepfake Detection Hackathon**")
|
|