Update app.py
Browse files
app.py
CHANGED
@@ -84,6 +84,134 @@
|
|
84 |
|
85 |
# st.markdown("πΉ **Developed for Fake News & Deepfake Detection Hackathon**")
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
import streamlit as st
|
88 |
import numpy as np
|
89 |
import cv2
|
@@ -100,11 +228,11 @@ from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
|
100 |
# ---- Page Configuration ----
|
101 |
st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
|
102 |
|
103 |
-
st.title("
|
104 |
-
st.write("
|
105 |
|
106 |
# Load Models
|
107 |
-
fake_news_detector = pipeline("
|
108 |
|
109 |
# Load Deepfake Detection Models
|
110 |
base_model_image = Xception(weights="imagenet", include_top=False)
|
@@ -138,32 +266,33 @@ def detect_deepfake_image(image_path):
|
|
138 |
return {"label": label, "score": confidence}
|
139 |
|
140 |
# ---- Fake News Detection Section ----
|
141 |
-
st.subheader("
|
142 |
news_input = st.text_area("Enter News Text:", placeholder="Type here...")
|
143 |
|
144 |
if st.button("Check News"):
|
145 |
-
st.write("
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
149 |
|
150 |
-
if label == "
|
151 |
st.error(f"β οΈ Result: This news is FAKE. (Confidence: {confidence:.2f})")
|
152 |
else:
|
153 |
st.success(f"β
Result: This news is REAL. (Confidence: {confidence:.2f})")
|
154 |
|
155 |
# ---- Deepfake Image Detection Section ----
|
156 |
-
st.subheader("
|
157 |
uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
|
158 |
|
159 |
if uploaded_image is not None:
|
160 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
|
161 |
img = Image.open(uploaded_image).convert("RGB")
|
162 |
img.save(temp_file.name, "JPEG")
|
163 |
-
st.image(temp_file.name, caption="
|
164 |
|
165 |
if st.button("Analyze Image"):
|
166 |
-
st.write("
|
167 |
result = detect_deepfake_image(temp_file.name)
|
168 |
|
169 |
if result["label"] == "FAKE":
|
@@ -172,7 +301,7 @@ if uploaded_image is not None:
|
|
172 |
st.success(f"β
Result: This image is Real. (Confidence: {1 - result['score']:.2f})")
|
173 |
|
174 |
# ---- Deepfake Video Detection Section ----
|
175 |
-
st.subheader("
|
176 |
uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])
|
177 |
|
178 |
def detect_deepfake_video(video_path):
|
@@ -202,7 +331,7 @@ if uploaded_video is not None:
|
|
202 |
f.write(uploaded_video.read())
|
203 |
|
204 |
if st.button("Analyze Video"):
|
205 |
-
st.write("
|
206 |
result = detect_deepfake_video(temp_file.name)
|
207 |
|
208 |
if result["label"] == "FAKE":
|
@@ -210,4 +339,4 @@ if uploaded_video is not None:
|
|
210 |
else:
|
211 |
st.success(f"β
Result: This video is Real. (Confidence: {1 - result['score']:.2f})")
|
212 |
|
213 |
-
st.markdown("πΉ **Developed for Fake News & Deepfake Detection Hackathon**")
|
|
|
84 |
|
85 |
# st.markdown("πΉ **Developed for Fake News & Deepfake Detection Hackathon**")
|
86 |
|
87 |
+
# import streamlit as st
|
88 |
+
# import numpy as np
|
89 |
+
# import cv2
|
90 |
+
# import tempfile
|
91 |
+
# import os
|
92 |
+
# from PIL import Image
|
93 |
+
# import tensorflow as tf
|
94 |
+
# from transformers import pipeline
|
95 |
+
# from tensorflow.keras.applications import Xception, EfficientNetB7
|
96 |
+
# from tensorflow.keras.models import Model
|
97 |
+
# from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
|
98 |
+
# from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
99 |
+
|
100 |
+
# # ---- Page Configuration ----
|
101 |
+
# st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
|
102 |
+
|
103 |
+
# st.title("π° Fake News & Deepfake Detection Tool")
|
104 |
+
# st.write("π Detect Fake News, Deepfake Images, and Videos using AI")
|
105 |
+
|
106 |
+
# # Load Models
|
107 |
+
# fake_news_detector = pipeline("text-classification", model="microsoft/deberta-v3-base")
|
108 |
+
|
109 |
+
# # Load Deepfake Detection Models
|
110 |
+
# base_model_image = Xception(weights="imagenet", include_top=False)
|
111 |
+
# base_model_image.trainable = False # Freeze base layers
|
112 |
+
# x = GlobalAveragePooling2D()(base_model_image.output)
|
113 |
+
# x = Dense(1024, activation="relu")(x)
|
114 |
+
# x = Dense(1, activation="sigmoid")(x) # Sigmoid for probability output
|
115 |
+
# deepfake_image_model = Model(inputs=base_model_image.input, outputs=x)
|
116 |
+
|
117 |
+
# base_model_video = EfficientNetB7(weights="imagenet", include_top=False)
|
118 |
+
# base_model_video.trainable = False
|
119 |
+
# x = GlobalAveragePooling2D()(base_model_video.output)
|
120 |
+
# x = Dense(1024, activation="relu")(x)
|
121 |
+
# x = Dense(1, activation="sigmoid")(x)
|
122 |
+
# deepfake_video_model = Model(inputs=base_model_video.input, outputs=x)
|
123 |
+
|
124 |
+
# # Function to Preprocess Image
|
125 |
+
# def preprocess_image(image_path):
|
126 |
+
# img = load_img(image_path, target_size=(299, 299)) # Xception expects 299x299
|
127 |
+
# img = img_to_array(img)
|
128 |
+
# img = np.expand_dims(img, axis=0)
|
129 |
+
# img /= 255.0 # Normalize pixel values
|
130 |
+
# return img
|
131 |
+
|
132 |
+
# # Function to Detect Deepfake Image
|
133 |
+
# def detect_deepfake_image(image_path):
|
134 |
+
# image = preprocess_image(image_path)
|
135 |
+
# prediction = deepfake_image_model.predict(image)[0][0]
|
136 |
+
# confidence = round(float(prediction), 2)
|
137 |
+
# label = "FAKE" if confidence > 0.5 else "REAL"
|
138 |
+
# return {"label": label, "score": confidence}
|
139 |
+
|
140 |
+
# # ---- Fake News Detection Section ----
|
141 |
+
# st.subheader("π Fake News Detection")
|
142 |
+
# news_input = st.text_area("Enter News Text:", placeholder="Type here...")
|
143 |
+
|
144 |
+
# if st.button("Check News"):
|
145 |
+
# st.write("π Processing...")
|
146 |
+
# prediction = fake_news_detector(news_input)
|
147 |
+
# label = prediction[0]['label']
|
148 |
+
# confidence = prediction[0]['score']
|
149 |
+
|
150 |
+
# if label == "FAKE":
|
151 |
+
# st.error(f"β οΈ Result: This news is FAKE. (Confidence: {confidence:.2f})")
|
152 |
+
# else:
|
153 |
+
# st.success(f"β
Result: This news is REAL. (Confidence: {confidence:.2f})")
|
154 |
+
|
155 |
+
# # ---- Deepfake Image Detection Section ----
|
156 |
+
# st.subheader("πΈ Deepfake Image Detection")
|
157 |
+
# uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
|
158 |
+
|
159 |
+
# if uploaded_image is not None:
|
160 |
+
# temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
|
161 |
+
# img = Image.open(uploaded_image).convert("RGB")
|
162 |
+
# img.save(temp_file.name, "JPEG")
|
163 |
+
# st.image(temp_file.name, caption="πΌοΈ Uploaded Image", use_column_width=True)
|
164 |
+
|
165 |
+
# if st.button("Analyze Image"):
|
166 |
+
# st.write("π Processing...")
|
167 |
+
# result = detect_deepfake_image(temp_file.name)
|
168 |
+
|
169 |
+
# if result["label"] == "FAKE":
|
170 |
+
# st.error(f"β οΈ Result: This image is a Deepfake. (Confidence: {result['score']:.2f})")
|
171 |
+
# else:
|
172 |
+
# st.success(f"β
Result: This image is Real. (Confidence: {1 - result['score']:.2f})")
|
173 |
+
|
174 |
+
# # ---- Deepfake Video Detection Section ----
|
175 |
+
# st.subheader("π₯ Deepfake Video Detection")
|
176 |
+
# uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])
|
177 |
+
|
178 |
+
# def detect_deepfake_video(video_path):
|
179 |
+
# cap = cv2.VideoCapture(video_path)
|
180 |
+
# frame_scores = []
|
181 |
+
|
182 |
+
# while cap.isOpened():
|
183 |
+
# ret, frame = cap.read()
|
184 |
+
# if not ret:
|
185 |
+
# break
|
186 |
+
|
187 |
+
# frame_path = "temp_frame.jpg"
|
188 |
+
# cv2.imwrite(frame_path, frame)
|
189 |
+
# result = detect_deepfake_image(frame_path)
|
190 |
+
# frame_scores.append(result["score"])
|
191 |
+
# os.remove(frame_path)
|
192 |
+
|
193 |
+
# cap.release()
|
194 |
+
# avg_score = np.mean(frame_scores)
|
195 |
+
# final_label = "FAKE" if avg_score > 0.5 else "REAL"
|
196 |
+
# return {"label": final_label, "score": round(float(avg_score), 2)}
|
197 |
+
|
198 |
+
# if uploaded_video is not None:
|
199 |
+
# st.video(uploaded_video)
|
200 |
+
# temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
201 |
+
# with open(temp_file.name, "wb") as f:
|
202 |
+
# f.write(uploaded_video.read())
|
203 |
+
|
204 |
+
# if st.button("Analyze Video"):
|
205 |
+
# st.write("π Processing...")
|
206 |
+
# result = detect_deepfake_video(temp_file.name)
|
207 |
+
|
208 |
+
# if result["label"] == "FAKE":
|
209 |
+
# st.warning(f"β οΈ Result: This video contains Deepfake elements. (Confidence: {result['score']:.2f})")
|
210 |
+
# else:
|
211 |
+
# st.success(f"β
Result: This video is Real. (Confidence: {1 - result['score']:.2f})")
|
212 |
+
|
213 |
+
# st.markdown("πΉ **Developed for Fake News & Deepfake Detection Hackathon**")
|
214 |
+
|
215 |
import streamlit as st
|
216 |
import numpy as np
|
217 |
import cv2
|
|
|
228 |
# ---- Page Configuration ----
|
229 |
st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
|
230 |
|
231 |
+
st.title("\U0001F4F0 Fake News & Deepfake Detection Tool")
|
232 |
+
st.write("\U0001F680 Detect Fake News, Deepfake Images, and Videos using AI")
|
233 |
|
234 |
# Load Models
|
235 |
+
fake_news_detector = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
236 |
|
237 |
# Load Deepfake Detection Models
|
238 |
base_model_image = Xception(weights="imagenet", include_top=False)
|
|
|
266 |
return {"label": label, "score": confidence}
|
267 |
|
268 |
# ---- Fake News Detection Section ----
|
269 |
+
st.subheader("\U0001F4DD Fake News Detection")
|
270 |
news_input = st.text_area("Enter News Text:", placeholder="Type here...")
|
271 |
|
272 |
if st.button("Check News"):
|
273 |
+
st.write("\U0001F50D Processing...")
|
274 |
+
labels = ["fake news", "real news"]
|
275 |
+
prediction = fake_news_detector(news_input, labels)
|
276 |
+
label = prediction['labels'][0]
|
277 |
+
confidence = prediction['scores'][0]
|
278 |
|
279 |
+
if label == "fake news":
|
280 |
st.error(f"β οΈ Result: This news is FAKE. (Confidence: {confidence:.2f})")
|
281 |
else:
|
282 |
st.success(f"β
Result: This news is REAL. (Confidence: {confidence:.2f})")
|
283 |
|
284 |
# ---- Deepfake Image Detection Section ----
|
285 |
+
st.subheader("\U0001F4F8 Deepfake Image Detection")
|
286 |
uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
|
287 |
|
288 |
if uploaded_image is not None:
|
289 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
|
290 |
img = Image.open(uploaded_image).convert("RGB")
|
291 |
img.save(temp_file.name, "JPEG")
|
292 |
+
st.image(temp_file.name, caption="\U0001F5BCοΈ Uploaded Image", use_column_width=True)
|
293 |
|
294 |
if st.button("Analyze Image"):
|
295 |
+
st.write("\U0001F50D Processing...")
|
296 |
result = detect_deepfake_image(temp_file.name)
|
297 |
|
298 |
if result["label"] == "FAKE":
|
|
|
301 |
st.success(f"β
Result: This image is Real. (Confidence: {1 - result['score']:.2f})")
|
302 |
|
303 |
# ---- Deepfake Video Detection Section ----
|
304 |
+
st.subheader("\U0001F3A5 Deepfake Video Detection")
|
305 |
uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])
|
306 |
|
307 |
def detect_deepfake_video(video_path):
|
|
|
331 |
f.write(uploaded_video.read())
|
332 |
|
333 |
if st.button("Analyze Video"):
|
334 |
+
st.write("\U0001F50D Processing...")
|
335 |
result = detect_deepfake_video(temp_file.name)
|
336 |
|
337 |
if result["label"] == "FAKE":
|
|
|
339 |
else:
|
340 |
st.success(f"β
Result: This video is Real. (Confidence: {1 - result['score']:.2f})")
|
341 |
|
342 |
+
st.markdown("πΉ **Developed for Fake News & Deepfake Detection Hackathon**")
|