Update app.py
Browse files
app.py
CHANGED
|
@@ -84,6 +84,134 @@
|
|
| 84 |
|
| 85 |
# st.markdown("πΉ **Developed for Fake News & Deepfake Detection Hackathon**")
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
import streamlit as st
|
| 88 |
import numpy as np
|
| 89 |
import cv2
|
|
@@ -100,11 +228,11 @@ from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
|
| 100 |
# ---- Page Configuration ----
|
| 101 |
st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
|
| 102 |
|
| 103 |
-
st.title("
|
| 104 |
-
st.write("
|
| 105 |
|
| 106 |
# Load Models
|
| 107 |
-
fake_news_detector = pipeline("
|
| 108 |
|
| 109 |
# Load Deepfake Detection Models
|
| 110 |
base_model_image = Xception(weights="imagenet", include_top=False)
|
|
@@ -138,32 +266,33 @@ def detect_deepfake_image(image_path):
|
|
| 138 |
return {"label": label, "score": confidence}
|
| 139 |
|
| 140 |
# ---- Fake News Detection Section ----
|
| 141 |
-
st.subheader("
|
| 142 |
news_input = st.text_area("Enter News Text:", placeholder="Type here...")
|
| 143 |
|
| 144 |
if st.button("Check News"):
|
| 145 |
-
st.write("
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
|
|
|
| 149 |
|
| 150 |
-
if label == "
|
| 151 |
st.error(f"β οΈ Result: This news is FAKE. (Confidence: {confidence:.2f})")
|
| 152 |
else:
|
| 153 |
st.success(f"β
Result: This news is REAL. (Confidence: {confidence:.2f})")
|
| 154 |
|
| 155 |
# ---- Deepfake Image Detection Section ----
|
| 156 |
-
st.subheader("
|
| 157 |
uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
|
| 158 |
|
| 159 |
if uploaded_image is not None:
|
| 160 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
|
| 161 |
img = Image.open(uploaded_image).convert("RGB")
|
| 162 |
img.save(temp_file.name, "JPEG")
|
| 163 |
-
st.image(temp_file.name, caption="
|
| 164 |
|
| 165 |
if st.button("Analyze Image"):
|
| 166 |
-
st.write("
|
| 167 |
result = detect_deepfake_image(temp_file.name)
|
| 168 |
|
| 169 |
if result["label"] == "FAKE":
|
|
@@ -172,7 +301,7 @@ if uploaded_image is not None:
|
|
| 172 |
st.success(f"β
Result: This image is Real. (Confidence: {1 - result['score']:.2f})")
|
| 173 |
|
| 174 |
# ---- Deepfake Video Detection Section ----
|
| 175 |
-
st.subheader("
|
| 176 |
uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])
|
| 177 |
|
| 178 |
def detect_deepfake_video(video_path):
|
|
@@ -202,7 +331,7 @@ if uploaded_video is not None:
|
|
| 202 |
f.write(uploaded_video.read())
|
| 203 |
|
| 204 |
if st.button("Analyze Video"):
|
| 205 |
-
st.write("
|
| 206 |
result = detect_deepfake_video(temp_file.name)
|
| 207 |
|
| 208 |
if result["label"] == "FAKE":
|
|
@@ -210,4 +339,4 @@ if uploaded_video is not None:
|
|
| 210 |
else:
|
| 211 |
st.success(f"β
Result: This video is Real. (Confidence: {1 - result['score']:.2f})")
|
| 212 |
|
| 213 |
-
st.markdown("πΉ **Developed for Fake News & Deepfake Detection Hackathon**")
|
|
|
|
| 84 |
|
| 85 |
# st.markdown("πΉ **Developed for Fake News & Deepfake Detection Hackathon**")
|
| 86 |
|
| 87 |
+
# import streamlit as st
|
| 88 |
+
# import numpy as np
|
| 89 |
+
# import cv2
|
| 90 |
+
# import tempfile
|
| 91 |
+
# import os
|
| 92 |
+
# from PIL import Image
|
| 93 |
+
# import tensorflow as tf
|
| 94 |
+
# from transformers import pipeline
|
| 95 |
+
# from tensorflow.keras.applications import Xception, EfficientNetB7
|
| 96 |
+
# from tensorflow.keras.models import Model
|
| 97 |
+
# from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
|
| 98 |
+
# from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
| 99 |
+
|
| 100 |
+
# # ---- Page Configuration ----
|
| 101 |
+
# st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
|
| 102 |
+
|
| 103 |
+
# st.title("π° Fake News & Deepfake Detection Tool")
|
| 104 |
+
# st.write("π Detect Fake News, Deepfake Images, and Videos using AI")
|
| 105 |
+
|
| 106 |
+
# # Load Models
|
| 107 |
+
# fake_news_detector = pipeline("text-classification", model="microsoft/deberta-v3-base")
|
| 108 |
+
|
| 109 |
+
# # Load Deepfake Detection Models
|
| 110 |
+
# base_model_image = Xception(weights="imagenet", include_top=False)
|
| 111 |
+
# base_model_image.trainable = False # Freeze base layers
|
| 112 |
+
# x = GlobalAveragePooling2D()(base_model_image.output)
|
| 113 |
+
# x = Dense(1024, activation="relu")(x)
|
| 114 |
+
# x = Dense(1, activation="sigmoid")(x) # Sigmoid for probability output
|
| 115 |
+
# deepfake_image_model = Model(inputs=base_model_image.input, outputs=x)
|
| 116 |
+
|
| 117 |
+
# base_model_video = EfficientNetB7(weights="imagenet", include_top=False)
|
| 118 |
+
# base_model_video.trainable = False
|
| 119 |
+
# x = GlobalAveragePooling2D()(base_model_video.output)
|
| 120 |
+
# x = Dense(1024, activation="relu")(x)
|
| 121 |
+
# x = Dense(1, activation="sigmoid")(x)
|
| 122 |
+
# deepfake_video_model = Model(inputs=base_model_video.input, outputs=x)
|
| 123 |
+
|
| 124 |
+
# # Function to Preprocess Image
|
| 125 |
+
# def preprocess_image(image_path):
|
| 126 |
+
# img = load_img(image_path, target_size=(299, 299)) # Xception expects 299x299
|
| 127 |
+
# img = img_to_array(img)
|
| 128 |
+
# img = np.expand_dims(img, axis=0)
|
| 129 |
+
# img /= 255.0 # Normalize pixel values
|
| 130 |
+
# return img
|
| 131 |
+
|
| 132 |
+
# # Function to Detect Deepfake Image
|
| 133 |
+
# def detect_deepfake_image(image_path):
|
| 134 |
+
# image = preprocess_image(image_path)
|
| 135 |
+
# prediction = deepfake_image_model.predict(image)[0][0]
|
| 136 |
+
# confidence = round(float(prediction), 2)
|
| 137 |
+
# label = "FAKE" if confidence > 0.5 else "REAL"
|
| 138 |
+
# return {"label": label, "score": confidence}
|
| 139 |
+
|
| 140 |
+
# # ---- Fake News Detection Section ----
|
| 141 |
+
# st.subheader("π Fake News Detection")
|
| 142 |
+
# news_input = st.text_area("Enter News Text:", placeholder="Type here...")
|
| 143 |
+
|
| 144 |
+
# if st.button("Check News"):
|
| 145 |
+
# st.write("π Processing...")
|
| 146 |
+
# prediction = fake_news_detector(news_input)
|
| 147 |
+
# label = prediction[0]['label']
|
| 148 |
+
# confidence = prediction[0]['score']
|
| 149 |
+
|
| 150 |
+
# if label == "FAKE":
|
| 151 |
+
# st.error(f"β οΈ Result: This news is FAKE. (Confidence: {confidence:.2f})")
|
| 152 |
+
# else:
|
| 153 |
+
# st.success(f"β
Result: This news is REAL. (Confidence: {confidence:.2f})")
|
| 154 |
+
|
| 155 |
+
# # ---- Deepfake Image Detection Section ----
|
| 156 |
+
# st.subheader("πΈ Deepfake Image Detection")
|
| 157 |
+
# uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
|
| 158 |
+
|
| 159 |
+
# if uploaded_image is not None:
|
| 160 |
+
# temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
|
| 161 |
+
# img = Image.open(uploaded_image).convert("RGB")
|
| 162 |
+
# img.save(temp_file.name, "JPEG")
|
| 163 |
+
# st.image(temp_file.name, caption="πΌοΈ Uploaded Image", use_column_width=True)
|
| 164 |
+
|
| 165 |
+
# if st.button("Analyze Image"):
|
| 166 |
+
# st.write("π Processing...")
|
| 167 |
+
# result = detect_deepfake_image(temp_file.name)
|
| 168 |
+
|
| 169 |
+
# if result["label"] == "FAKE":
|
| 170 |
+
# st.error(f"β οΈ Result: This image is a Deepfake. (Confidence: {result['score']:.2f})")
|
| 171 |
+
# else:
|
| 172 |
+
# st.success(f"β
Result: This image is Real. (Confidence: {1 - result['score']:.2f})")
|
| 173 |
+
|
| 174 |
+
# # ---- Deepfake Video Detection Section ----
|
| 175 |
+
# st.subheader("π₯ Deepfake Video Detection")
|
| 176 |
+
# uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])
|
| 177 |
+
|
| 178 |
+
# def detect_deepfake_video(video_path):
|
| 179 |
+
# cap = cv2.VideoCapture(video_path)
|
| 180 |
+
# frame_scores = []
|
| 181 |
+
|
| 182 |
+
# while cap.isOpened():
|
| 183 |
+
# ret, frame = cap.read()
|
| 184 |
+
# if not ret:
|
| 185 |
+
# break
|
| 186 |
+
|
| 187 |
+
# frame_path = "temp_frame.jpg"
|
| 188 |
+
# cv2.imwrite(frame_path, frame)
|
| 189 |
+
# result = detect_deepfake_image(frame_path)
|
| 190 |
+
# frame_scores.append(result["score"])
|
| 191 |
+
# os.remove(frame_path)
|
| 192 |
+
|
| 193 |
+
# cap.release()
|
| 194 |
+
# avg_score = np.mean(frame_scores)
|
| 195 |
+
# final_label = "FAKE" if avg_score > 0.5 else "REAL"
|
| 196 |
+
# return {"label": final_label, "score": round(float(avg_score), 2)}
|
| 197 |
+
|
| 198 |
+
# if uploaded_video is not None:
|
| 199 |
+
# st.video(uploaded_video)
|
| 200 |
+
# temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
| 201 |
+
# with open(temp_file.name, "wb") as f:
|
| 202 |
+
# f.write(uploaded_video.read())
|
| 203 |
+
|
| 204 |
+
# if st.button("Analyze Video"):
|
| 205 |
+
# st.write("π Processing...")
|
| 206 |
+
# result = detect_deepfake_video(temp_file.name)
|
| 207 |
+
|
| 208 |
+
# if result["label"] == "FAKE":
|
| 209 |
+
# st.warning(f"β οΈ Result: This video contains Deepfake elements. (Confidence: {result['score']:.2f})")
|
| 210 |
+
# else:
|
| 211 |
+
# st.success(f"β
Result: This video is Real. (Confidence: {1 - result['score']:.2f})")
|
| 212 |
+
|
| 213 |
+
# st.markdown("πΉ **Developed for Fake News & Deepfake Detection Hackathon**")
|
| 214 |
+
|
| 215 |
import streamlit as st
|
| 216 |
import numpy as np
|
| 217 |
import cv2
|
|
|
|
| 228 |
# ---- Page Configuration ----
|
| 229 |
st.set_page_config(page_title="Fake & Deepfake Detection", layout="wide")
|
| 230 |
|
| 231 |
+
st.title("\U0001F4F0 Fake News & Deepfake Detection Tool")
|
| 232 |
+
st.write("\U0001F680 Detect Fake News, Deepfake Images, and Videos using AI")
|
| 233 |
|
| 234 |
# Load Models
|
| 235 |
+
fake_news_detector = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
| 236 |
|
| 237 |
# Load Deepfake Detection Models
|
| 238 |
base_model_image = Xception(weights="imagenet", include_top=False)
|
|
|
|
| 266 |
return {"label": label, "score": confidence}
|
| 267 |
|
| 268 |
# ---- Fake News Detection Section ----
|
| 269 |
+
st.subheader("\U0001F4DD Fake News Detection")
|
| 270 |
news_input = st.text_area("Enter News Text:", placeholder="Type here...")
|
| 271 |
|
| 272 |
if st.button("Check News"):
|
| 273 |
+
st.write("\U0001F50D Processing...")
|
| 274 |
+
labels = ["fake news", "real news"]
|
| 275 |
+
prediction = fake_news_detector(news_input, labels)
|
| 276 |
+
label = prediction['labels'][0]
|
| 277 |
+
confidence = prediction['scores'][0]
|
| 278 |
|
| 279 |
+
if label == "fake news":
|
| 280 |
st.error(f"β οΈ Result: This news is FAKE. (Confidence: {confidence:.2f})")
|
| 281 |
else:
|
| 282 |
st.success(f"β
Result: This news is REAL. (Confidence: {confidence:.2f})")
|
| 283 |
|
| 284 |
# ---- Deepfake Image Detection Section ----
|
| 285 |
+
st.subheader("\U0001F4F8 Deepfake Image Detection")
|
| 286 |
uploaded_image = st.file_uploader("Upload an Image", type=["jpg", "png", "jpeg"])
|
| 287 |
|
| 288 |
if uploaded_image is not None:
|
| 289 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg")
|
| 290 |
img = Image.open(uploaded_image).convert("RGB")
|
| 291 |
img.save(temp_file.name, "JPEG")
|
| 292 |
+
st.image(temp_file.name, caption="\U0001F5BCοΈ Uploaded Image", use_column_width=True)
|
| 293 |
|
| 294 |
if st.button("Analyze Image"):
|
| 295 |
+
st.write("\U0001F50D Processing...")
|
| 296 |
result = detect_deepfake_image(temp_file.name)
|
| 297 |
|
| 298 |
if result["label"] == "FAKE":
|
|
|
|
| 301 |
st.success(f"β
Result: This image is Real. (Confidence: {1 - result['score']:.2f})")
|
| 302 |
|
| 303 |
# ---- Deepfake Video Detection Section ----
|
| 304 |
+
st.subheader("\U0001F3A5 Deepfake Video Detection")
|
| 305 |
uploaded_video = st.file_uploader("Upload a Video", type=["mp4", "avi", "mov"])
|
| 306 |
|
| 307 |
def detect_deepfake_video(video_path):
|
|
|
|
| 331 |
f.write(uploaded_video.read())
|
| 332 |
|
| 333 |
if st.button("Analyze Video"):
|
| 334 |
+
st.write("\U0001F50D Processing...")
|
| 335 |
result = detect_deepfake_video(temp_file.name)
|
| 336 |
|
| 337 |
if result["label"] == "FAKE":
|
|
|
|
| 339 |
else:
|
| 340 |
st.success(f"β
Result: This video is Real. (Confidence: {1 - result['score']:.2f})")
|
| 341 |
|
| 342 |
+
st.markdown("πΉ **Developed for Fake News & Deepfake Detection Hackathon**")
|