Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
import librosa
|
5 |
+
|
6 |
+
# 1. Load your trained model (must be in the same folder, named model.h5)
|
7 |
+
model = tf.keras.models.load_model("model.h5")
|
8 |
+
|
9 |
+
# 2. Define labels & emojis (match your model’s output classes)
|
10 |
+
EMOTIONS = ["Neutral", "Calm", "Happy", "Sad", "Angry", "Fearful", "Disgust", "Surprised"]
|
11 |
+
EMOJI_MAP = {
|
12 |
+
"Neutral": "😐", "Calm": "😌", "Happy": "😄", "Sad": "😢",
|
13 |
+
"Angry": "😠", "Fearful": "😨", "Disgust": "🤢", "Surprised": "😲"
|
14 |
+
}
|
15 |
+
|
16 |
+
def predict_emotion(audio_path):
|
17 |
+
# Load & preprocess audio
|
18 |
+
y, sr = librosa.load(audio_path, sr=22050)
|
19 |
+
mfcc = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)
|
20 |
+
features = np.mean(mfcc.T, axis=0).reshape(1, -1)
|
21 |
+
|
22 |
+
# Run model
|
23 |
+
preds = model.predict(features)
|
24 |
+
idx = np.argmax(preds, axis=1)[0]
|
25 |
+
label = EMOTIONS[idx]
|
26 |
+
emoji = EMOJI_MAP[label]
|
27 |
+
return f"{label} {emoji}"
|
28 |
+
|
29 |
+
# 3. Build Gradio Interface
|
30 |
+
demo = gr.Interface(
|
31 |
+
fn=predict_emotion,
|
32 |
+
inputs=gr.Audio(source="upload", type="filepath", label="Upload a .wav file"),
|
33 |
+
outputs=gr.Text(label="Predicted Emotion"),
|
34 |
+
title="🎤 Voice Emotion AI",
|
35 |
+
description="Upload a voice clip (.wav) to detect the speaker’s emotion."
|
36 |
+
)
|
37 |
+
|
38 |
+
if __name__ == "__main__":
|
39 |
+
demo.launch()
|