Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
|
|
3 |
import numpy as np
|
4 |
-
import librosa
|
5 |
|
6 |
-
#
|
7 |
-
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
14 |
}
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
fn=predict_emotion,
|
32 |
-
inputs=gr.Audio(source="upload", type="filepath", label="Upload
|
33 |
-
outputs=gr.
|
34 |
-
title="
|
35 |
-
description="Upload
|
36 |
)
|
37 |
|
38 |
if __name__ == "__main__":
|
39 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2Processor
|
5 |
import numpy as np
|
|
|
6 |
|
7 |
+
# Load model and processor
|
8 |
+
model_name = "ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition"
|
9 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
10 |
+
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
|
11 |
|
12 |
+
# Emotion labels and emojis
|
13 |
+
id2label = {
|
14 |
+
0: "angry 😠",
|
15 |
+
1: "calm 😌",
|
16 |
+
2: "happy 😄",
|
17 |
+
3: "sad 😢"
|
18 |
}
|
19 |
|
20 |
+
# Audio processing and prediction
|
21 |
+
def predict_emotion(audio):
|
22 |
+
if audio is None:
|
23 |
+
return "No audio provided"
|
24 |
+
|
25 |
+
speech_array, sampling_rate = torchaudio.load(audio)
|
26 |
+
if sampling_rate != 16000:
|
27 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)
|
28 |
+
speech_array = resampler(speech_array)
|
29 |
+
|
30 |
+
input_values = processor(speech_array.squeeze(), return_tensors="pt", sampling_rate=16000).input_values
|
31 |
+
with torch.no_grad():
|
32 |
+
logits = model(input_values).logits
|
33 |
+
|
34 |
+
predicted_id = torch.argmax(logits, dim=-1).item()
|
35 |
+
return f"Detected Emotion: {id2label[predicted_id]}"
|
36 |
+
|
37 |
+
# Gradio UI
|
38 |
+
app = gr.Interface(
|
39 |
fn=predict_emotion,
|
40 |
+
inputs=gr.Audio(source="upload", type="filepath", label="Upload or Record Audio"),
|
41 |
+
outputs=gr.Textbox(label="Detected Emotion with Emoji"),
|
42 |
+
title="🎙️ Voice Emotion Detector with Emoji",
|
43 |
+
description="Upload or record your voice. The model will detect your emotion and display an emoji."
|
44 |
)
|
45 |
|
46 |
if __name__ == "__main__":
|
47 |
+
app.launch()
|