File size: 8,629 Bytes
def1c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# app.py (for C++ to Pseudocode task)
import gradio as gr
import torch
import os
import math
import torch.nn as nn
import re
import sys
import asyncio

if sys.platform.startswith('win'):
    asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())

DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MAX_LEN = 128
EMBED_DIM = 256
NHEAD = 4
NUM_ENCODER_LAYERS = 2
NUM_DECODER_LAYERS = 2
FF_DIM = 512

PAD_TOKEN = "<pad>"
SOS_TOKEN = "<sos>"
EOS_TOKEN = "<eos>"
UNK_TOKEN = "<unk>"

def tokenize_line(text):
    return re.findall(r"[A-Za-z0-9]+|[^\sA-Za-z0-9]", text)

def numericalize(text, stoi):
    tokens = tokenize_line(text)
    return [stoi.get(tok, stoi[UNK_TOKEN]) for tok in tokens]

def pad_sequence(seq, max_len, pad_id):
    seq = seq[:max_len-1]
    seq = seq + [tgt_stoi[EOS_TOKEN]]
    if len(seq) < max_len:
        seq += [pad_id] * (max_len - len(seq))
    return seq

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=5000):
        super().__init__()
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer("pe", pe)
    def forward(self, x):
        return x + self.pe[:, :x.size(1), :]

class MultiHeadAttention(nn.Module):
    def __init__(self, d_model, n_heads):
        super().__init__()
        assert d_model % n_heads == 0
        self.head_dim = d_model // n_heads
        self.n_heads = n_heads
        self.query_linear = nn.Linear(d_model, d_model)
        self.key_linear = nn.Linear(d_model, d_model)
        self.value_linear = nn.Linear(d_model, d_model)
        self.out_linear = nn.Linear(d_model, d_model)
    def forward(self, query, key, value, mask=None):
        B, Q_len, _ = query.size()
        Q = self.query_linear(query).view(B, Q_len, self.n_heads, self.head_dim).transpose(1, 2)
        K = self.key_linear(key).view(B, key.size(1), self.n_heads, self.head_dim).transpose(1, 2)
        V = self.value_linear(value).view(B, value.size(1), self.n_heads, self.head_dim).transpose(1, 2)
        scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.head_dim)
        if mask is not None:
            scores = scores.masked_fill(mask == 0, float('-inf'))
        attn = torch.softmax(scores, dim=-1)
        context = torch.matmul(attn, V).transpose(1, 2).contiguous().view(B, Q_len, -1)
        return self.out_linear(context)

class FeedForward(nn.Module):
    def __init__(self, d_model, dim_feedforward):
        super().__init__()
        self.fc1 = nn.Linear(d_model, dim_feedforward)
        self.fc2 = nn.Linear(dim_feedforward, d_model)
        self.relu = nn.ReLU()
    def forward(self, x):
        return self.fc2(self.relu(self.fc1(x)))

class EncoderLayer(nn.Module):
    def __init__(self, d_model, n_heads, dim_feedforward):
        super().__init__()
        self.self_attn = MultiHeadAttention(d_model, n_heads)
        self.ff = FeedForward(d_model, dim_feedforward)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(0.1)
    def forward(self, src, src_mask=None):
        src = self.norm1(src + self.dropout(self.self_attn(src, src, src, mask=src_mask)))
        src = self.norm2(src + self.dropout(self.ff(src)))
        return src

class DecoderLayer(nn.Module):
    def __init__(self, d_model, n_heads, dim_feedforward):
        super().__init__()
        self.self_attn = MultiHeadAttention(d_model, n_heads)
        self.cross_attn = MultiHeadAttention(d_model, n_heads)
        self.ff = FeedForward(d_model, dim_feedforward)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(0.1)
    def forward(self, tgt, memory, tgt_mask=None, memory_mask=None):
        tgt = self.norm1(tgt + self.dropout(self.self_attn(tgt, tgt, tgt, mask=tgt_mask)))
        tgt = self.norm2(tgt + self.dropout(self.cross_attn(tgt, memory, memory, mask=memory_mask)))
        tgt = self.norm3(tgt + self.dropout(self.ff(tgt)))
        return tgt

class Encoder(nn.Module):
    def __init__(self, vocab_size, d_model, n_heads, num_layers, dim_feedforward):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, d_model)
        self.pos_encoding = PositionalEncoding(d_model)
        self.layers = nn.ModuleList([EncoderLayer(d_model, n_heads, dim_feedforward) for _ in range(num_layers)])
    def forward(self, src, src_mask=None):
        x = self.embedding(src)
        x = self.pos_encoding(x)
        for layer in self.layers:
            x = layer(x, src_mask)
        return x

class Decoder(nn.Module):
    def __init__(self, vocab_size, d_model, n_heads, num_layers, dim_feedforward):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, d_model)
        self.pos_encoding = PositionalEncoding(d_model)
        self.layers = nn.ModuleList([DecoderLayer(d_model, n_heads, dim_feedforward) for _ in range(num_layers)])
        self.fc_out = nn.Linear(d_model, vocab_size)
    def forward(self, tgt, memory, tgt_mask=None, memory_mask=None):
        x = self.embedding(tgt)
        x = self.pos_encoding(x)
        for layer in self.layers:
            x = layer(x, memory, tgt_mask, memory_mask)
        return self.fc_out(x)

class TransformerSeq2Seq(nn.Module):
    def __init__(self, src_vocab_size, tgt_vocab_size, d_model, n_heads,
                 num_encoder_layers, num_decoder_layers, dim_feedforward):
        super().__init__()
        self.encoder = Encoder(src_vocab_size, d_model, n_heads, num_encoder_layers, dim_feedforward)
        self.decoder = Decoder(tgt_vocab_size, d_model, n_heads, num_decoder_layers, dim_feedforward)
    def forward(self, src, tgt, src_mask=None, tgt_mask=None):
        memory = self.encoder(src, src_mask)
        return self.decoder(tgt, memory, tgt_mask)

def generate_subsequent_mask(size):
    mask = torch.triu(torch.ones(size, size), diagonal=1).bool()
    return ~mask

def greedy_decode(model, src, src_stoi, tgt_stoi, tgt_itos, max_len=MAX_LEN):
    model.eval()
    src = torch.tensor(src, dtype=torch.long, device=DEVICE).unsqueeze(0)
    memory = model.encoder(src)
    ys = torch.tensor([tgt_stoi[SOS_TOKEN]], dtype=torch.long, device=DEVICE).unsqueeze(0)
    for _ in range(max_len-1):
        tgt_mask = generate_subsequent_mask(ys.size(1)).to(DEVICE)
        out = model.decoder(ys, memory, tgt_mask)
        next_token = torch.argmax(out[:, -1, :], dim=-1).item()
        ys = torch.cat([ys, torch.tensor([[next_token]], device=DEVICE)], dim=1)
        if next_token == tgt_stoi[EOS_TOKEN]:
            break
    out_tokens = ys.squeeze(0).tolist()[1:]
    if tgt_stoi[EOS_TOKEN] in out_tokens:
        out_tokens = out_tokens[:out_tokens.index(tgt_stoi[EOS_TOKEN])]
    return " ".join(tgt_itos[t] for t in out_tokens)

# Load model checkpoint
checkpoint = torch.load("model.pth", map_location=DEVICE)
src_stoi = checkpoint['src_stoi']
src_itos = checkpoint['src_itos']
tgt_stoi = checkpoint['tgt_stoi']
tgt_itos = checkpoint['tgt_itos']

model = TransformerSeq2Seq(
    src_vocab_size=len(src_stoi),
    tgt_vocab_size=len(tgt_stoi),
    d_model=EMBED_DIM,
    n_heads=NHEAD,
    num_encoder_layers=NUM_ENCODER_LAYERS,
    num_decoder_layers=NUM_DECODER_LAYERS,
    dim_feedforward=FF_DIM
).to(DEVICE)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()

def convert_cpp_to_pseudocode(code_text):
    lines = code_text.strip().split('\n')
    outputs = []
    for i, line in enumerate(lines):
        line = line.strip()
        if not line or line in ["int main() {", "}", "return 0;"]:
            continue
        try:
            src_ids = numericalize(line, src_stoi)
            src_ids = pad_sequence(src_ids, MAX_LEN, src_stoi[PAD_TOKEN])
            out_line = greedy_decode(model, src_ids, src_stoi, tgt_stoi, tgt_itos)
            outputs.append(out_line)
        except Exception as e:
            outputs.append(f"// Error in line {i+1}: {e}")
    return "\n".join(outputs)

iface = gr.Interface(
    fn=convert_cpp_to_pseudocode,
    inputs=gr.Textbox(label="Enter C++ Code", lines=10),
    outputs=gr.Textbox(label="Generated Pseudocode"),
    title="C++ to Pseudocode Converter (Transformer from Scratch)"
)

if __name__ == "__main__":
    iface.launch()