Spaces:
Running
Running
File size: 9,058 Bytes
e06e912 cfc0e75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# gradio_app.py
import gradio as gr
import torch
import os
import math
import torch.nn as nn
import re
import sys
import asyncio
if sys.platform.startswith('win'):
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MAX_LEN = 128
EMBED_DIM = 256
NHEAD = 4
NUM_ENCODER_LAYERS = 2
NUM_DECODER_LAYERS = 2
FF_DIM = 512
PAD_TOKEN = "<pad>"
SOS_TOKEN = "<sos>"
EOS_TOKEN = "<eos>"
UNK_TOKEN = "<unk>"
def tokenize_line(text: str):
return re.findall(r"[A-Za-z0-9]+|[^\sA-Za-z0-9]", text)
def numericalize(text: str, stoi: dict):
tokens = tokenize_line(text)
return [stoi.get(tok, stoi[UNK_TOKEN]) for tok in tokens]
def pad_sequence(seq, max_len, pad_id):
seq = seq[:max_len-1]
seq = seq + [tgt_stoi[EOS_TOKEN]]
if len(seq) < max_len:
seq += [pad_id] * (max_len - len(seq))
return seq
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super().__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer("pe", pe)
def forward(self, x):
return x + self.pe[:, :x.size(1), :]
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, n_heads):
super().__init__()
assert d_model % n_heads == 0
self.d_model = d_model
self.n_heads = n_heads
self.head_dim = d_model // n_heads
self.query_linear = nn.Linear(d_model, d_model)
self.key_linear = nn.Linear(d_model, d_model)
self.value_linear = nn.Linear(d_model, d_model)
self.out_linear = nn.Linear(d_model, d_model)
def forward(self, query, key, value, mask=None):
B, Q_len, _ = query.size()
B, K_len, _ = key.size()
Q = self.query_linear(query)
K = self.key_linear(key)
V = self.value_linear(value)
Q = Q.view(B, Q_len, self.n_heads, self.head_dim).transpose(1,2)
K = K.view(B, K_len, self.n_heads, self.head_dim).transpose(1,2)
V = V.view(B, K_len, self.n_heads, self.head_dim).transpose(1,2)
scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.head_dim)
if mask is not None:
scores = scores.masked_fill(mask == 0, float('-inf'))
attn = torch.softmax(scores, dim=-1)
context = torch.matmul(attn, V)
context = context.transpose(1,2).contiguous().view(B, Q_len, self.d_model)
return self.out_linear(context)
class FeedForward(nn.Module):
def __init__(self, d_model, dim_feedforward):
super().__init__()
self.fc1 = nn.Linear(d_model, dim_feedforward)
self.fc2 = nn.Linear(dim_feedforward, d_model)
self.relu = nn.ReLU()
def forward(self, x):
return self.fc2(self.relu(self.fc1(x)))
class EncoderLayer(nn.Module):
def __init__(self, d_model, n_heads, dim_feedforward):
super().__init__()
self.self_attn = MultiHeadAttention(d_model, n_heads)
self.ff = FeedForward(d_model, dim_feedforward)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(0.1)
def forward(self, src, src_mask=None):
attn_out = self.self_attn(src, src, src, mask=src_mask)
src = self.norm1(src + self.dropout(attn_out))
ff_out = self.ff(src)
return self.norm2(src + self.dropout(ff_out))
class DecoderLayer(nn.Module):
def __init__(self, d_model, n_heads, dim_feedforward):
super().__init__()
self.self_attn = MultiHeadAttention(d_model, n_heads)
self.cross_attn = MultiHeadAttention(d_model, n_heads)
self.ff = FeedForward(d_model, dim_feedforward)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(0.1)
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None):
tgt = self.norm1(tgt + self.dropout(self.self_attn(tgt, tgt, tgt, mask=tgt_mask)))
tgt = self.norm2(tgt + self.dropout(self.cross_attn(tgt, memory, memory, mask=memory_mask)))
ff_out = self.ff(tgt)
return self.norm3(tgt + self.dropout(ff_out))
class Encoder(nn.Module):
def __init__(self, vocab_size, d_model, n_heads, num_layers, dim_feedforward):
super().__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoding = PositionalEncoding(d_model)
self.layers = nn.ModuleList([EncoderLayer(d_model, n_heads, dim_feedforward) for _ in range(num_layers)])
def forward(self, src, src_mask=None):
x = self.embedding(src)
x = self.pos_encoding(x)
for layer in self.layers:
x = layer(x, src_mask)
return x
class Decoder(nn.Module):
def __init__(self, vocab_size, d_model, n_heads, num_layers, dim_feedforward):
super().__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_encoding = PositionalEncoding(d_model)
self.layers = nn.ModuleList([DecoderLayer(d_model, n_heads, dim_feedforward) for _ in range(num_layers)])
self.fc_out = nn.Linear(d_model, vocab_size)
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None):
x = self.embedding(tgt)
x = self.pos_encoding(x)
for layer in self.layers:
x = layer(x, memory, tgt_mask, memory_mask)
return self.fc_out(x)
class TransformerSeq2Seq(nn.Module):
def __init__(self, src_vocab_size, tgt_vocab_size, d_model, n_heads,
num_encoder_layers, num_decoder_layers, dim_feedforward):
super().__init__()
self.encoder = Encoder(src_vocab_size, d_model, n_heads, num_encoder_layers, dim_feedforward)
self.decoder = Decoder(tgt_vocab_size, d_model, n_heads, num_decoder_layers, dim_feedforward)
def forward(self, src, tgt, src_mask=None, tgt_mask=None):
memory = self.encoder(src, src_mask)
return self.decoder(tgt, memory, tgt_mask)
def generate_subsequent_mask(size):
mask = torch.triu(torch.ones(size, size), diagonal=1).bool()
return ~mask
def greedy_decode(model, src, src_stoi, tgt_stoi, tgt_itos, max_len=MAX_LEN):
model.eval()
src = torch.tensor(src, dtype=torch.long, device=DEVICE).unsqueeze(0)
memory = model.encoder(src)
ys = torch.tensor([tgt_stoi[SOS_TOKEN]], dtype=torch.long, device=DEVICE).unsqueeze(0)
for i in range(max_len-1):
tgt_mask = generate_subsequent_mask(ys.size(1)).to(DEVICE)
out = model.decoder(ys, memory, tgt_mask)
prob = out[:, -1, :]
next_token = torch.argmax(prob, dim=1).item()
ys = torch.cat([ys, torch.tensor([[next_token]], device=DEVICE)], dim=1)
if next_token == tgt_stoi[EOS_TOKEN]:
break
out_tokens = ys.squeeze(0).tolist()[1:]
if tgt_stoi[EOS_TOKEN] in out_tokens:
out_tokens = out_tokens[:out_tokens.index(tgt_stoi[EOS_TOKEN])]
return " ".join(tgt_itos[t] for t in out_tokens)
# Load model and vocabulary
if not os.path.exists("model.pth"):
raise FileNotFoundError("Model file 'model.pth' not found. Please train first.")
checkpoint = torch.load("model.pth", map_location=DEVICE)
src_stoi = checkpoint['src_stoi']
src_itos = checkpoint['src_itos']
tgt_stoi = checkpoint['tgt_stoi']
tgt_itos = checkpoint['tgt_itos']
model = TransformerSeq2Seq(
src_vocab_size=len(src_stoi),
tgt_vocab_size=len(tgt_stoi),
d_model=EMBED_DIM,
n_heads=NHEAD,
num_encoder_layers=NUM_ENCODER_LAYERS,
num_decoder_layers=NUM_DECODER_LAYERS,
dim_feedforward=FF_DIM
).to(DEVICE)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
def convert_pseudocode(text):
lines = text.strip().split('\n')
outputs = []
for i, line in enumerate(lines):
line = line.strip()
if not line:
outputs.append("")
elif line == "}":
outputs.append("}")
else:
try:
src_ids = numericalize(line, src_stoi)
src_ids = pad_sequence(src_ids, MAX_LEN, src_stoi[PAD_TOKEN])
output_line = greedy_decode(model, src_ids, src_stoi, tgt_stoi, tgt_itos)
outputs.append(output_line)
except Exception as e:
outputs.append(f"// [Error in line {i+1}]: {e}")
return "int main() {\n" + '\n'.join(outputs) + "\nreturn 0;\n}"
iface = gr.Interface(
fn=convert_pseudocode,
inputs=gr.Textbox(label="Enter pseudocode (line-by-line)", lines=10),
outputs=gr.Code(language="cpp", label="Generated C++ Code"),
title="PseudoCode to C++ Converter (Transformer from Scratch)"
)
if __name__ == "__main__":
iface.launch(share=True)
|