RAGnosis / app.py
asadsandhu's picture
Updated code.
a2cbc8f
raw
history blame
3.2 kB
import gradio as gr
import pandas as pd
import faiss
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from sentence_transformers import SentenceTransformer
# ----------------------
# Load Retrieval Corpus & FAISS Index
# ----------------------
df = pd.read_csv("retrieval_corpus.csv")
index = faiss.read_index("faiss_index.bin")
# ----------------------
# Load Embedding Model
# ----------------------
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
# ----------------------
# Load HuggingFace LLM (Nous-Hermes)
# ----------------------
model_id = "BioMistral/BioMistral-7B"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.save_pretrained("fixed_tokenizer")
generation_model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto",
quantization_config=bnb_config
)
# ----------------------
# RAG Functions
# ----------------------
def retrieve_top_k(query, k=5):
query_embedding = embedding_model.encode([query]).astype("float32")
D, I = index.search(query_embedding, k)
results = df.iloc[I[0]].copy()
results["score"] = D[0]
return results
def build_prompt(query, retrieved_docs):
context_text = "\n".join([
f"- {doc['text']}" for _, doc in retrieved_docs.iterrows()
])
prompt = f"""[INST] <<SYS>>
You are a medical assistant trained on clinical reasoning data. Given the following patient query and related clinical observations, generate a diagnostic explanation or suggestion based on the context.
<</SYS>>
### Patient Query:
{query}
### Clinical Context:
{context_text}
### Diagnostic Explanation:
[/INST]
"""
return prompt
def generate_local_answer(prompt, max_new_tokens=512):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(device)
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
output = generation_model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
temperature=0.5,
do_sample=True,
top_k=50,
top_p=0.95,
)
decoded = tokenizer.decode(output[0], skip_special_tokens=True)
return decoded.split("### Diagnostic Explanation:")[-1].strip()
# ----------------------
# Gradio Interface
# ----------------------
def rag_chat(query):
top_docs = retrieve_top_k(query, k=5)
prompt = build_prompt(query, top_docs)
answer = generate_local_answer(prompt)
return answer
iface = gr.Interface(
fn=rag_chat,
inputs=gr.Textbox(lines=3, placeholder="Enter a clinical query..."),
outputs="text",
title="🩺 Clinical Reasoning RAG Assistant",
description="Ask a medical question based on MIMIC-IV-Ext-DiReCT's diagnostic knowledge.",
allow_flagging="never"
)
iface.launch()