Spaces:
Sleeping
Sleeping
Commit
·
dd74b32
1
Parent(s):
a2cbc8f
Model Changes.
Browse files
app.py
CHANGED
@@ -3,45 +3,23 @@ import pandas as pd
|
|
3 |
import faiss
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
|
9 |
-
#
|
10 |
-
# Load Retrieval Corpus & FAISS Index
|
11 |
-
# ----------------------
|
12 |
df = pd.read_csv("retrieval_corpus.csv")
|
13 |
index = faiss.read_index("faiss_index.bin")
|
14 |
|
15 |
-
#
|
16 |
-
# Load Embedding Model
|
17 |
-
# ----------------------
|
18 |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
# ----------------------
|
23 |
-
model_id = "BioMistral/BioMistral-7B"
|
24 |
-
|
25 |
-
bnb_config = BitsAndBytesConfig(
|
26 |
-
load_in_4bit=True,
|
27 |
-
bnb_4bit_use_double_quant=True,
|
28 |
-
bnb_4bit_quant_type="nf4",
|
29 |
-
bnb_4bit_compute_dtype=torch.float16,
|
30 |
-
)
|
31 |
|
32 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
33 |
-
tokenizer.pad_token = tokenizer.eos_token
|
34 |
-
tokenizer.save_pretrained("fixed_tokenizer")
|
35 |
-
generation_model = AutoModelForCausalLM.from_pretrained(
|
36 |
-
model_id,
|
37 |
-
torch_dtype=torch.float16,
|
38 |
-
device_map="auto",
|
39 |
-
quantization_config=bnb_config
|
40 |
-
)
|
41 |
|
42 |
-
|
43 |
-
# RAG Functions
|
44 |
-
# ----------------------
|
45 |
|
46 |
def retrieve_top_k(query, k=5):
|
47 |
query_embedding = embedding_model.encode([query]).astype("float32")
|
@@ -51,11 +29,8 @@ def retrieve_top_k(query, k=5):
|
|
51 |
return results
|
52 |
|
53 |
def build_prompt(query, retrieved_docs):
|
54 |
-
context_text = "\n".join([
|
55 |
-
|
56 |
-
])
|
57 |
-
|
58 |
-
prompt = f"""[INST] <<SYS>>
|
59 |
You are a medical assistant trained on clinical reasoning data. Given the following patient query and related clinical observations, generate a diagnostic explanation or suggestion based on the context.
|
60 |
<</SYS>>
|
61 |
|
@@ -68,14 +43,14 @@ You are a medical assistant trained on clinical reasoning data. Given the follow
|
|
68 |
### Diagnostic Explanation:
|
69 |
[/INST]
|
70 |
"""
|
71 |
-
return prompt
|
72 |
|
73 |
def generate_local_answer(prompt, max_new_tokens=512):
|
74 |
-
device = torch.device("
|
75 |
print(f"Using device: {device}")
|
76 |
-
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
|
77 |
-
input_ids = inputs["input_ids"]
|
78 |
-
attention_mask = inputs["attention_mask"]
|
|
|
79 |
output = generation_model.generate(
|
80 |
input_ids=input_ids,
|
81 |
attention_mask=attention_mask,
|
@@ -88,23 +63,18 @@ def generate_local_answer(prompt, max_new_tokens=512):
|
|
88 |
decoded = tokenizer.decode(output[0], skip_special_tokens=True)
|
89 |
return decoded.split("### Diagnostic Explanation:")[-1].strip()
|
90 |
|
91 |
-
# ----------------------
|
92 |
-
# Gradio Interface
|
93 |
-
# ----------------------
|
94 |
-
|
95 |
def rag_chat(query):
|
96 |
top_docs = retrieve_top_k(query, k=5)
|
97 |
prompt = build_prompt(query, top_docs)
|
98 |
-
|
99 |
-
return answer
|
100 |
|
101 |
iface = gr.Interface(
|
102 |
fn=rag_chat,
|
103 |
inputs=gr.Textbox(lines=3, placeholder="Enter a clinical query..."),
|
104 |
outputs="text",
|
105 |
title="🩺 Clinical Reasoning RAG Assistant",
|
106 |
-
description="Ask a medical question based on MIMIC
|
107 |
allow_flagging="never"
|
108 |
)
|
109 |
|
110 |
-
iface.launch()
|
|
|
3 |
import faiss
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
|
9 |
+
# Load retrieval corpus & FAISS index
|
|
|
|
|
10 |
df = pd.read_csv("retrieval_corpus.csv")
|
11 |
index = faiss.read_index("faiss_index.bin")
|
12 |
|
13 |
+
# Load embedding model
|
|
|
|
|
14 |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
15 |
|
16 |
+
# Swap to BioMedLM 2.7B (CPU-friendly biomedical model)
|
17 |
+
model_id = "stanford-crfm/BioMedLM"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
20 |
+
tokenizer.pad_token = tokenizer.eos_token # fix padding issue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
generation_model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
|
|
|
23 |
|
24 |
def retrieve_top_k(query, k=5):
|
25 |
query_embedding = embedding_model.encode([query]).astype("float32")
|
|
|
29 |
return results
|
30 |
|
31 |
def build_prompt(query, retrieved_docs):
|
32 |
+
context_text = "\n".join([f"- {doc['text']}" for _, doc in retrieved_docs.iterrows()])
|
33 |
+
return f"""[INST] <<SYS>>
|
|
|
|
|
|
|
34 |
You are a medical assistant trained on clinical reasoning data. Given the following patient query and related clinical observations, generate a diagnostic explanation or suggestion based on the context.
|
35 |
<</SYS>>
|
36 |
|
|
|
43 |
### Diagnostic Explanation:
|
44 |
[/INST]
|
45 |
"""
|
|
|
46 |
|
47 |
def generate_local_answer(prompt, max_new_tokens=512):
|
48 |
+
device = torch.device("cpu")
|
49 |
print(f"Using device: {device}")
|
50 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
|
51 |
+
input_ids = inputs["input_ids"].to(device)
|
52 |
+
attention_mask = inputs["attention_mask"].to(device)
|
53 |
+
|
54 |
output = generation_model.generate(
|
55 |
input_ids=input_ids,
|
56 |
attention_mask=attention_mask,
|
|
|
63 |
decoded = tokenizer.decode(output[0], skip_special_tokens=True)
|
64 |
return decoded.split("### Diagnostic Explanation:")[-1].strip()
|
65 |
|
|
|
|
|
|
|
|
|
66 |
def rag_chat(query):
|
67 |
top_docs = retrieve_top_k(query, k=5)
|
68 |
prompt = build_prompt(query, top_docs)
|
69 |
+
return generate_local_answer(prompt)
|
|
|
70 |
|
71 |
iface = gr.Interface(
|
72 |
fn=rag_chat,
|
73 |
inputs=gr.Textbox(lines=3, placeholder="Enter a clinical query..."),
|
74 |
outputs="text",
|
75 |
title="🩺 Clinical Reasoning RAG Assistant",
|
76 |
+
description="Ask a medical question based on MIMIC‑IV‑Ext‑DiReCT’s diagnostic knowledge.",
|
77 |
allow_flagging="never"
|
78 |
)
|
79 |
|
80 |
+
iface.launch()
|