Spaces:
Running
Running
Commit
Β·
e531b46
1
Parent(s):
b651070
Updated model.
Browse files
app.py
CHANGED
@@ -1,52 +1,103 @@
|
|
1 |
import gradio as gr
|
2 |
-
import pandas as pd
|
3 |
-
|
|
|
|
|
|
|
4 |
from sentence_transformers import SentenceTransformer
|
|
|
5 |
|
6 |
-
#
|
|
|
|
|
|
|
7 |
df = pd.read_csv("retrieval_corpus.csv")
|
8 |
index = faiss.read_index("faiss_index.bin")
|
|
|
|
|
9 |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
19 |
-
tokenizer.pad_token = tokenizer.eos_token
|
20 |
-
generation_model = AutoModelForCausalLM.from_pretrained(
|
21 |
model_id,
|
22 |
-
|
23 |
-
device_map=
|
24 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
def
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
def generate_local_answer(prompt, max_new_tokens=512):
|
36 |
-
import time
|
37 |
-
device = torch.device("cpu")
|
38 |
-
start = time.time()
|
39 |
-
inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(device)
|
40 |
-
out = generation_model.generate(
|
41 |
-
input_ids=inputs.input_ids,
|
42 |
-
attention_mask=inputs.attention_mask,
|
43 |
-
max_new_tokens=max_new_tokens,
|
44 |
-
do_sample=False,
|
45 |
-
num_beams=1,
|
46 |
)
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import faiss
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
|
10 |
+
# ===============================
|
11 |
+
# Load Retrieval Components
|
12 |
+
# ===============================
|
13 |
+
print("Loading corpus and FAISS index...")
|
14 |
df = pd.read_csv("retrieval_corpus.csv")
|
15 |
index = faiss.read_index("faiss_index.bin")
|
16 |
+
|
17 |
+
print("Loading embedding model...")
|
18 |
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
19 |
|
20 |
+
# ===============================
|
21 |
+
# Load LLM on CPU
|
22 |
+
# ===============================
|
23 |
+
model_id = "PrunaAI/BioMistral-7B-bnb-8bit-smashed"
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("BioMistral/BioMistral-7B")
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
26 |
model_id,
|
27 |
+
trust_remote_code=True,
|
28 |
+
device_map=None, # CPU only
|
29 |
)
|
30 |
+
tokenizer.pad_token = tokenizer.eos_token
|
31 |
+
|
32 |
+
# ===============================
|
33 |
+
# RAG Pipeline
|
34 |
+
# ===============================
|
35 |
+
def get_top_k_chunks(query, k=5):
|
36 |
+
query_embedding = embedding_model.encode([query])
|
37 |
+
scores, indices = index.search(np.array(query_embedding).astype("float32"), k)
|
38 |
+
return df.iloc[indices[0]]["text"].tolist()
|
39 |
|
40 |
+
def build_prompt(query, chunks):
|
41 |
+
context = "\n".join(f"{i+1}. {chunk}" for i, chunk in enumerate(chunks))
|
42 |
+
prompt = (
|
43 |
+
"You are a clinical reasoning assistant. Based on the following medical information, "
|
44 |
+
"answer the query with a detailed explanation.\n\n"
|
45 |
+
f"Context:\n{context}\n\n"
|
46 |
+
f"Query: {query}\n"
|
47 |
+
"Answer:"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
)
|
49 |
+
return prompt
|
50 |
+
|
51 |
+
def generate_diagnosis(query):
|
52 |
+
chunks = get_top_k_chunks(query)
|
53 |
+
prompt = build_prompt(query, chunks)
|
54 |
+
|
55 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
|
56 |
+
input_ids = inputs.input_ids.to("cpu")
|
57 |
+
|
58 |
+
with torch.no_grad():
|
59 |
+
output = model.generate(
|
60 |
+
input_ids=input_ids,
|
61 |
+
max_new_tokens=256,
|
62 |
+
do_sample=True,
|
63 |
+
top_k=50,
|
64 |
+
top_p=0.95,
|
65 |
+
temperature=0.7,
|
66 |
+
pad_token_id=tokenizer.eos_token_id
|
67 |
+
)
|
68 |
+
|
69 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
70 |
+
answer = generated_text.split("Answer:")[-1].strip()
|
71 |
+
return answer, "\n\n".join(chunks)
|
72 |
+
|
73 |
+
# ===============================
|
74 |
+
# Gradio UI
|
75 |
+
# ===============================
|
76 |
+
def run_interface():
|
77 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
78 |
+
gr.Markdown("## π§ Clinical Diagnosis Assistant (RAG)")
|
79 |
+
gr.Markdown("Enter a clinical query. The assistant retrieves relevant medical facts and generates a diagnostic explanation.")
|
80 |
+
|
81 |
+
with gr.Row():
|
82 |
+
query_input = gr.Textbox(label="Clinical Query", placeholder="e.g. 65-year-old male with shortness of breath...")
|
83 |
+
generate_btn = gr.Button("Generate Diagnosis")
|
84 |
+
|
85 |
+
with gr.Accordion("π Retrieved Context", open=False):
|
86 |
+
context_output = gr.Textbox(label="Top-5 Retrieved Chunks", lines=10, interactive=False)
|
87 |
+
|
88 |
+
answer_output = gr.Textbox(label="Generated Diagnosis", lines=8)
|
89 |
+
|
90 |
+
generate_btn.click(
|
91 |
+
fn=generate_diagnosis,
|
92 |
+
inputs=query_input,
|
93 |
+
outputs=[answer_output, context_output]
|
94 |
+
)
|
95 |
+
|
96 |
+
return demo
|
97 |
|
98 |
+
# ===============================
|
99 |
+
# Launch App
|
100 |
+
# ===============================
|
101 |
+
if __name__ == "__main__":
|
102 |
+
demo = run_interface()
|
103 |
+
demo.launch()
|