File size: 25,796 Bytes
dd850a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
import gradio as gr
import torch
import sys
import os
import json
from pathlib import Path

# Add project root to path
sys.path.insert(0, str(Path(__file__).parent))

from core.model_handler import ModelHandler
from core.attention import AttentionProcessor
from core.cache import AttentionCache
from config import Config
from visualization.d3_viz import create_d3_visualization

class TokenVisualizerApp:
    def __init__(self):
        self.config = Config()
        self.model_handler = ModelHandler(config=self.config)
        self.cache = AttentionCache(max_size=self.config.CACHE_SIZE)
        self.current_data = None
        self.model_loaded = False
        

    def load_model(self, model_name: str = None) -> str:
        """Load the model and return status message."""
        if not model_name:
            model_name = self.config.DEFAULT_MODEL
        
        success, message = self.model_handler.load_model(model_name)
        self.model_loaded = success
        
        if success:
            model_info = self.model_handler.get_model_info()
            return f"βœ… Model loaded: {model_name}\nπŸ“Š Parameters: {model_info['num_parameters']:,}\nπŸ–₯️ Device: {model_info['device']}"
        else:
            return f"❌ Failed to load model: {message}"
    
    def generate_and_visualize(
        self,
        prompt: str,
        max_tokens: int,
        threshold: float,
        temperature: float,
        normalization: str,
        progress=gr.Progress()
    ):
        """Main generation function (no visualization)."""
        if not self.model_loaded:
            return None, "Please load a model first!", None
        
        if not prompt.strip():
            return None, "Please enter a prompt!", None
        
        progress(0.2, desc="Checking cache...")
        
        # Check cache
        cache_key = self.cache.get_key(
            prompt, max_tokens, 
            self.model_handler.model_name, 
            temperature
        )
        cached = self.cache.get(cache_key)
        
        if cached:
            progress(0.5, desc="Using cached data...")
            self.current_data = cached
        else:
            progress(0.3, desc="Generating text...")
            
            # Generate new
            attention_data, output_tokens, input_tokens, generated_text = \
                self.model_handler.generate_with_attention(
                    prompt, max_tokens, temperature
                )
            
            if attention_data is None:
                return None, f"Generation failed: {generated_text}", None
            
            progress(0.6, desc="Processing attention...")
            
            # Process attention based on normalization method
            if normalization == "separate":
                attention_matrices = AttentionProcessor.process_attention_separate(
                    attention_data, input_tokens, output_tokens
                )
            else:
                attention_matrices = AttentionProcessor.process_attention_joint(
                    attention_data, input_tokens, output_tokens
                )
            
            self.current_data = {
                'input_tokens': input_tokens,
                'output_tokens': output_tokens,
                'attention_matrices': attention_matrices,
                'generated_text': generated_text,
                'attention_data': attention_data  # Keep raw for step updates
            }
            
            # Cache it
            self.cache.set(cache_key, self.current_data)
        
        progress(1.0, desc="Complete!")
        
        # Create info text
        info_text = f"πŸ“ Generated: {self.current_data['generated_text']}\n"
        info_text += f"πŸ”€ Input tokens: {len(self.current_data['input_tokens'])}\n"
        info_text += f"πŸ”€ Output tokens: {len(self.current_data['output_tokens'])}"
        
        return (
            info_text,
        )
    
    def update_step(self, step_idx: int, threshold: float):
        """No-op placeholder after removing visualization."""
        return None
    
    def update_threshold(self, threshold: float, normalization: str):
        """No-op placeholder after removing visualization."""
        return None
    
    def filter_token_connections(self, token_idx: int, token_type: str, threshold: float):
        """Removed visualization; keep placeholder."""
        return None
    
    def reset_view(self, threshold: float):
        """Removed visualization; keep placeholder."""
        return None

    def on_d3_token_click(self, click_data: str, threshold: float):
        """Removed visualization; keep placeholder for compatibility."""
        return None, gr.update()
    
    def on_input_token_select(self, token_label: str, threshold: float):
        """Removed visualization; keep placeholder for compatibility."""
        return None

    def prepare_d3_data(self, step_idx: int, threshold: float = 0.01, filter_token: str = None):
        """
        Convert attention data to D3.js-friendly JSON format.
        
        Args:
            step_idx: Generation step to visualize (0-based)
            threshold: Minimum attention weight to include
            filter_token: Token to filter by (format: "[IN] token" or "[OUT] token" or "All tokens")
            
        Returns:
            dict: JSON structure with nodes and links for D3.js
        """
        if not self.current_data:
            return {"nodes": [], "links": []}
        
        input_tokens = self.current_data['input_tokens']
        output_tokens = self.current_data['output_tokens']
        attention_matrices = self.current_data['attention_matrices']
        
        # Ensure step_idx is within bounds
        if step_idx >= len(attention_matrices):
            step_idx = len(attention_matrices) - 1
        
        attention_matrix = attention_matrices[step_idx]
        
        # Create nodes
        nodes = []
        
        # Add input nodes
        for i, token in enumerate(input_tokens):
            nodes.append({
                "id": f"input_{i}",
                "token": token,
                "type": "input",
                "index": i
            })
        
        # Add output nodes (up to current step)
        for i in range(step_idx + 1):
            if i < len(output_tokens):
                nodes.append({
                    "id": f"output_{i}",
                    "token": output_tokens[i],
                    "type": "output",
                    "index": i
                })
        
        # Parse filter token
        filter_type = None
        filter_idx = None
        if filter_token and filter_token != "All tokens":
            if filter_token.startswith("[IN] "):
                filter_type = "input"
                filter_token_text = filter_token[5:]  # Remove "[IN] " prefix
                filter_idx = next((i for i, token in enumerate(input_tokens) if token == filter_token_text), None)
            elif filter_token.startswith("[OUT] "):
                filter_type = "output"
                filter_token_text = filter_token[6:]  # Remove "[OUT] " prefix
                filter_idx = next((i for i, token in enumerate(output_tokens) if token == filter_token_text), None)
        
        # Create links from attention matrices - show ALL steps up to current step
        links = []
        
        # Show connections for all steps up to and including step_idx
        for current_step in range(step_idx + 1):
            if current_step < len(attention_matrices):
                step_attention = attention_matrices[current_step]
                
                # Links from input tokens to this output token
                input_attention = step_attention['input_attention']
                if input_attention is not None:
                    for input_idx in range(len(input_tokens)):
                        if input_idx < len(input_attention):  # Check bounds
                            weight = float(input_attention[input_idx])
                            if weight >= threshold:
                                # Apply filtering
                                show_link = True
                                if filter_type == "input" and filter_idx is not None:
                                    # Only show connections involving the selected input token
                                    show_link = (input_idx == filter_idx)
                                elif filter_type == "output" and filter_idx is not None:
                                    # Only show connections involving the selected output token
                                    show_link = (current_step == filter_idx)
                                
                                if show_link:
                                    links.append({
                                        "source": f"input_{input_idx}",
                                        "target": f"output_{current_step}",
                                        "weight": weight,
                                        "type": "input_to_output"
                                    })
                
                # Links from previous output tokens to this output token
                output_attention = step_attention['output_attention']
                if output_attention is not None and current_step > 0:
                    for prev_output_idx in range(current_step):
                        if prev_output_idx < len(output_attention):  # Check bounds
                            weight = float(output_attention[prev_output_idx])
                            if weight >= threshold:
                                # Apply filtering
                                show_link = True
                                if filter_type == "input" and filter_idx is not None:
                                    # Don't show output-to-output connections when filtering by input
                                    show_link = False
                                elif filter_type == "output" and filter_idx is not None:
                                    # Only show connections involving the selected output token
                                    show_link = (prev_output_idx == filter_idx or current_step == filter_idx)
                                
                                if show_link:
                                    links.append({
                                        "source": f"output_{prev_output_idx}",
                                        "target": f"output_{current_step}",
                                        "weight": weight,
                                        "type": "output_to_output"
                                    })
        
        return {
            "nodes": nodes,
            "links": links,
            "step": step_idx,
            "total_steps": len(attention_matrices),
            "input_count": len(input_tokens),
            "output_count": step_idx + 1
        }

    def create_d3_visualization_html(self, step_idx: int = 0, threshold: float = 0.01, filter_token: str = None):
        """
        Create D3.js visualization HTML for the current data.
        
        Args:
            step_idx: Generation step to visualize (0-based)
            threshold: Minimum attention weight to include
            filter_token: Token to filter by (format: "[IN] token" or "[OUT] token")
            
        Returns:
            str: HTML string for D3.js visualization
        """
        if not self.current_data:
            return "<div>No data available. Generate text first!</div>"
        
        d3_data = self.prepare_d3_data(step_idx, threshold, filter_token)
        
        viz_html = create_d3_visualization(d3_data)
        return viz_html

    def get_token_choices(self):
        """
        Get list of token choices for dropdown.
        
        Returns:
            list: List of token strings for dropdown options
        """
        if not self.current_data:
            return []
        
        input_tokens = self.current_data['input_tokens']
        output_tokens = self.current_data['output_tokens']
        
        # Create choices with prefixes to distinguish input/output
        choices = ["All tokens"]
        choices.extend([f"[IN] {token}" for token in input_tokens])
        choices.extend([f"[OUT] {token}" for token in output_tokens])
        
        return choices


def create_gradio_interface():
    """Create the Gradio interface."""
    app = TokenVisualizerApp()
    
    with gr.Blocks(
        title="Token Attention Visualizer",
        css="""
        /* Default/Light mode styles */
        .main-header {
            text-align: center;
            padding: 2rem 0 3rem 0;
            background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
            border-radius: 1rem;
            margin-bottom: 2rem;
            border: 1px solid #e2e8f0;
        }
        
        .main-title {
            font-size: 2.5rem;
            font-weight: 700;
            color: #1e293b;
            margin-bottom: 0.5rem;
            background: linear-gradient(135deg, #1e293b 0%, #3b82f6 100%);
            -webkit-background-clip: text;
            -webkit-text-fill-color: transparent;
            background-clip: text;
        }
        
        .main-subtitle {
            font-size: 1.125rem;
            color: #64748b;
            font-weight: 400;
        }
        
        .section-title {
            font-size: 1.25rem;
            font-weight: 600;
            color: #1e293b;
            margin-bottom: 1.5rem;
            padding-bottom: 0.5rem;
            border-bottom: 2px solid #e2e8f0;
        }
        
        /* Explicit light mode overrides */
        .light .main-header,
        [data-theme="light"] .main-header {
            background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
            border: 1px solid #e2e8f0;
        }
        
        .light .main-title,
        [data-theme="light"] .main-title {
            color: #1e293b;
            background: linear-gradient(135deg, #1e293b 0%, #3b82f6 100%);
            -webkit-background-clip: text;
            -webkit-text-fill-color: transparent;
            background-clip: text;
        }
        
        .light .main-subtitle,
        [data-theme="light"] .main-subtitle {
            color: #64748b;
        }
        
        .light .section-title,
        [data-theme="light"] .section-title {
            color: #1e293b;
            border-bottom: 2px solid #e2e8f0;
        }
        
        /* Dark mode styles with higher specificity */
        .dark .main-header,
        [data-theme="dark"] .main-header {
            background: linear-gradient(135deg, #1e293b 0%, #334155 100%) !important;
            border: 1px solid #475569 !important;
        }
        
        .dark .main-title,
        [data-theme="dark"] .main-title {
            color: #f1f5f9 !important;
            background: linear-gradient(135deg, #f1f5f9 0%, #60a5fa 100%) !important;
            -webkit-background-clip: text !important;
            -webkit-text-fill-color: transparent !important;
            background-clip: text !important;
        }
        
        .dark .main-subtitle,
        [data-theme="dark"] .main-subtitle {
            color: #cbd5e1 !important;
        }
        
        .dark .section-title,
        [data-theme="dark"] .section-title {
            color: #f1f5f9 !important;
            border-bottom: 2px solid #475569 !important;
        }
        
        /* System dark mode - only apply when no explicit theme is set */
        @media (prefers-color-scheme: dark) {
            :root:not([data-theme="light"]) .main-header {
                background: linear-gradient(135deg, #1e293b 0%, #334155 100%);
                border: 1px solid #475569;
            }
            
            :root:not([data-theme="light"]) .main-title {
                color: #f1f5f9;
                background: linear-gradient(135deg, #f1f5f9 0%, #60a5fa 100%);
                -webkit-background-clip: text;
                -webkit-text-fill-color: transparent;
                background-clip: text;
            }
            
            :root:not([data-theme="light"]) .main-subtitle {
                color: #cbd5e1;
            }
            
            :root:not([data-theme="light"]) .section-title {
                color: #f1f5f9;
                border-bottom: 2px solid #475569;
            }
        }
        
        .load-model-btn {
            background: linear-gradient(135deg, #f97316 0%, #ea580c 100%) !important;
            color: white !important;
            border: none !important;
            font-weight: 600 !important;
            padding: 0.75rem 2rem !important;
            border-radius: 0.5rem !important;
            box-shadow: 0 4px 6px -1px rgba(249, 115, 22, 0.25) !important;
            transition: all 0.2s ease !important;
        }
        
        .load-model-btn:hover {
            background: linear-gradient(135deg, #ea580c 0%, #dc2626 100%) !important;
            transform: translateY(-1px) !important;
            box-shadow: 0 6px 8px -1px rgba(249, 115, 22, 0.35) !important;
        }
        """
    ) as demo:
        gr.HTML("""
            <div class="main-header">
                <h1 class="main-title">Token Attention Visualizer</h1>
                <p class="main-subtitle">Interactive visualization of attention patterns in Large Language Models</p>
            </div>
        """)
        
        with gr.Row():
            # Left Panel - Controls
            with gr.Column(scale=1):
                gr.HTML('<h2 class="section-title">Model & Generation</h2>')
                
                # Model loading
                model_input = gr.Textbox(
                    label="Model Name",
                    value=app.config.DEFAULT_MODEL,
                    placeholder="Enter Hugging Face model name..."
                )
                load_model_btn = gr.Button("Load Model", variant="primary", elem_classes=["load-model-btn"])
                
                model_status = gr.Textbox(
                    label="Model Status",
                    value="No model loaded",
                    interactive=False,
                    lines=2
                )
                
                # Generation controls
                prompt_input = gr.Textbox(
                    label="Prompt",
                    value=app.config.DEFAULT_PROMPT,
                    lines=3,
                    placeholder="Enter your prompt here..."
                )
                
                max_tokens_input = gr.Slider(
                    minimum=1,
                    maximum=50,
                    value=app.config.DEFAULT_MAX_TOKENS,
                    step=1,
                    label="Max Tokens"
                )
                
                temperature_input = gr.Slider(
                    minimum=0.0,
                    maximum=2.0,
                    value=app.config.DEFAULT_TEMPERATURE,
                    step=0.1,
                    label="Temperature"
                )
                
                generate_btn = gr.Button("Generate", variant="primary", size="lg")
                
                generated_info = gr.Textbox(
                    label="Generation Info",
                    interactive=False,
                    lines=4
                )
                
                gr.HTML('<h2 class="section-title">Visualization Controls</h2>')
                
                step_slider = gr.Slider(
                    minimum=0,
                    maximum=10,
                    value=0,
                    step=1,
                    label="Generation Step",
                    info="Navigate through generation steps"
                )
                
                threshold_slider = gr.Slider(
                    minimum=0.001,
                    maximum=0.5,
                    value=0.01,
                    step=0.001,
                    label="Attention Threshold", 
                    info="Filter weak connections"
                )
                
                token_dropdown = gr.Dropdown(
                    choices=["All tokens"],
                    value="All tokens",
                    label="Filter by Token",
                    info="Select a token to highlight"
                )
            
            # Right Panel - Visualization
            with gr.Column(scale=2):
                gr.HTML('<h2 class="section-title">Attention Visualization</h2>')
                
                d3_visualization = gr.HTML(
                    value="""<div style='height: 700px; display: flex; align-items: center; justify-content: center; font-size: 16px;'>
                        <div style='text-align: center;'>
                            <div style='font-size: 3rem; margin-bottom: 16px; opacity: 0.5;'>βšͺ</div>
                            <div style='font-weight: 500; margin-bottom: 8px;'>Ready to visualize</div>
                            <div>Generate text to see attention patterns</div>
                        </div>
                    </div>"""
                )
        
        # (Visualization output and overlay removed)
        
        # Instructions
        with gr.Accordion("πŸ“– How to Use", open=False):
            gr.Markdown(
                """
                ### Instructions:
                1. **Load a model** from Hugging Face (default: Llama-3.2-1B)
                2. **Enter a prompt** and configure generation settings
                3. **Click Generate** to create text and visualize attention
                4. **Interact with the visualization:**
                   - Use the **step slider** to navigate through generation steps
                   - Adjust the **threshold** to filter weak connections
                   - Click on **tokens** in the plot to filter their connections
                   - Click **Reset View** to show all connections
                
                ### Understanding the Visualization:
                - **Blue lines**: Attention from input to output tokens
                - **Orange curves**: Attention between output tokens
                - **Line thickness**: Represents attention weight strength
                - **Node colors**: Blue = input tokens, Coral = generated tokens
                """
            )
        
        # Event handlers
        load_model_btn.click(
            fn=app.load_model,
            inputs=[model_input],
            outputs=[model_status]
        )
        
        def _generate(prompt, max_tokens, threshold, temperature):
            info, = app.generate_and_visualize(
                prompt, max_tokens, threshold, temperature, "separate"  # Always use separate normalization
            )
            
            # Update visualization and dropdown choices
            max_steps = len(app.current_data['attention_matrices']) - 1 if app.current_data else 0
            viz_html = app.create_d3_visualization_html(step_idx=max_steps, threshold=0.01)  # Start with last step
            token_choices = app.get_token_choices()
            
            return info, viz_html, gr.update(choices=token_choices, value="All tokens"), gr.update(maximum=max_steps, value=max_steps)

        generate_btn.click(
            fn=_generate,
            inputs=[
                prompt_input,
                max_tokens_input,
                gr.State(app.config.DEFAULT_THRESHOLD),  # keep threshold in call but unused
                temperature_input
            ],
            outputs=[generated_info, d3_visualization, token_dropdown, step_slider]
        )
        
        # Event handlers for visualization controls
        def _update_visualization(step_idx, threshold, filter_token="All tokens"):
            """Update visualization when step or threshold changes."""
            viz_html = app.create_d3_visualization_html(step_idx=int(step_idx), threshold=threshold, filter_token=filter_token)
            return viz_html

        def _filter_by_token(selected_token, step_idx, threshold):
            """Update visualization when token filter changes."""
            viz_html = app.create_d3_visualization_html(step_idx=int(step_idx), threshold=threshold, filter_token=selected_token)
            return viz_html

        # Connect visualization controls
        step_slider.change(
            fn=_update_visualization,
            inputs=[step_slider, threshold_slider, token_dropdown],
            outputs=[d3_visualization]
        )
        
        threshold_slider.change(
            fn=_update_visualization,
            inputs=[step_slider, threshold_slider, token_dropdown],
            outputs=[d3_visualization]
        )
        
        token_dropdown.change(
            fn=_filter_by_token,
            inputs=[token_dropdown, step_slider, threshold_slider],
            outputs=[d3_visualization]
        )


        
        # Load default model on startup
        demo.load(
            fn=app.load_model,
            inputs=[gr.State(app.config.DEFAULT_MODEL)],
            outputs=[model_status]
        )
    
    return demo

if __name__ == "__main__":
    # Check if CUDA is available
    if torch.cuda.is_available():
        print(f"βœ… CUDA available: {torch.cuda.get_device_name(0)}")
    else:
        print("⚠️ CUDA not available, using CPU")
    
    # Create and launch the app
    demo = create_gradio_interface()
    """ demo.launch(
        share=False,  # Set to True for public URL
        server_name="0.0.0.0",  # Allow external connections
        server_port=7860,  # Default Gradio port
        inbrowser=False  # Don't auto-open browser
    ) """

    demo.launch()