Spaces:
Sleeping
Sleeping
Upload streamlit_app.py
Browse files- src/streamlit_app.py +75 -32
src/streamlit_app.py
CHANGED
@@ -1,40 +1,83 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
|
23 |
-
|
24 |
-
y = radius * np.sin(theta)
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from typing import List, Tuple
|
3 |
+
import re
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
6 |
|
7 |
+
# Mapping of label to color
|
8 |
+
LABEL_COLORS = {
|
9 |
+
'LABEL-0': '#cccccc', # NONE
|
10 |
+
'LABEL-1': '#ffadad', # B-DATE
|
11 |
+
'LABEL-2': '#ffd6a5', # I-DATE
|
12 |
+
'LABEL-3': '#fdffb6', # B-TIME
|
13 |
+
'LABEL-4': '#caffbf', # I-TIME
|
14 |
+
'LABEL-5': '#9bf6ff', # B-DURATION
|
15 |
+
'LABEL-6': '#a0c4ff', # I-DURATION
|
16 |
+
'LABEL-7': '#bdb2ff', # B-SET
|
17 |
+
'LABEL-8': '#ffc6ff', # I-SET
|
18 |
+
}
|
19 |
|
20 |
+
@st.cache_resource(show_spinner=True)
|
21 |
+
def load_model():
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained('asdc/Bio-RoBERTime')
|
23 |
+
model = AutoModelForTokenClassification.from_pretrained('asdc/Bio-RoBERTime')
|
24 |
+
return tokenizer, model
|
25 |
|
26 |
+
def ner_with_robertime(text: str) -> List[Tuple[str, str]]:
|
27 |
+
tokenizer, model = load_model()
|
28 |
+
# Tokenize and get input tensors
|
29 |
+
tokens = tokenizer(text, return_tensors="pt", truncation=True, is_split_into_words=False)
|
30 |
+
with torch.no_grad():
|
31 |
+
outputs = model(**tokens)
|
32 |
+
predictions = torch.argmax(outputs.logits, dim=2)[0].tolist()
|
33 |
+
# Map ids to labels
|
34 |
+
labels = [model.config.id2label[pred] for pred in predictions]
|
35 |
+
# Get tokens (handling subwords)
|
36 |
+
word_ids = tokens.word_ids(batch_index=0)
|
37 |
+
token_list = tokenizer.convert_ids_to_tokens(tokens["input_ids"][0])
|
38 |
+
# Merge subwords and assign entity labels
|
39 |
+
entities = []
|
40 |
+
current_word = ''
|
41 |
+
current_label = None
|
42 |
+
last_word_id = None
|
43 |
+
for idx, word_id in enumerate(word_ids):
|
44 |
+
if word_id is None:
|
45 |
+
continue
|
46 |
+
token = token_list[idx]
|
47 |
+
label = labels[idx]
|
48 |
+
if token.startswith('▁') or token.startswith('##') or token.startswith('Ġ'):
|
49 |
+
token = token.lstrip('▁#Ġ')
|
50 |
+
if word_id != last_word_id and current_word:
|
51 |
+
entities.append((current_word, current_label))
|
52 |
+
current_word = token
|
53 |
+
current_label = label
|
54 |
+
else:
|
55 |
+
if current_word:
|
56 |
+
current_word += token if token.startswith("'") else f' {token}'
|
57 |
+
else:
|
58 |
+
current_word = token
|
59 |
+
current_label = label
|
60 |
+
last_word_id = word_id
|
61 |
+
if current_word:
|
62 |
+
entities.append((current_word, current_label))
|
63 |
+
return entities
|
64 |
|
65 |
+
def colorize_entities(ner_result: List[Tuple[str, str]]) -> str:
|
66 |
+
html = ''
|
67 |
+
for token, label in ner_result:
|
68 |
+
color = LABEL_COLORS.get(label, '#eeeeee')
|
69 |
+
if label != 'LABEL-0':
|
70 |
+
html += f'<span style="background-color:{color};padding:2px 4px;border-radius:4px;margin:1px;">{token}</span> '
|
71 |
+
else:
|
72 |
+
html += f'{token} '
|
73 |
+
return html
|
74 |
|
75 |
+
st.title('LLM-powered Named Entity Recognition (NER)')
|
|
|
|
|
76 |
|
77 |
+
user_text = st.text_area('Enter text for NER:', height=150)
|
|
|
78 |
|
79 |
+
if user_text:
|
80 |
+
ner_result = ner_with_robertime(user_text)
|
81 |
+
st.markdown('#### Entities:')
|
82 |
+
st.markdown(colorize_entities(ner_result), unsafe_allow_html=True)
|
83 |
+
st.caption('Model: [asdc/Bio-RoBERTime](https://huggingface.co/asdc/Bio-RoBERTime)')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|