Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, BitsAndBytesConfig | |
from peft import PeftModel | |
import torch | |
import os | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# Set your model and adapter paths | |
API_KEY = os.environ.get("llama_ACCESS_TOKEN") | |
BASE_MODEL = "meta-llama/Meta-Llama-3-8B" | |
PEFT_ADAPTER = "asdc/Llama-3-8B-multilingual-temporal-expression-normalization" | |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, token=API_KEY) | |
base_model = AutoModelForCausalLM.from_pretrained( | |
BASE_MODEL, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
token=API_KEY | |
) | |
nf4_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
model = PeftModel.from_pretrained(base_model, PEFT_ADAPTER, token=API_KEY, quantization_config=nf4_config) | |
pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
device_map="auto" | |
) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
prompt = system_message + "\n" | |
for user, assistant in history: | |
if user: | |
prompt += f"User: {user}\n" | |
if assistant: | |
prompt += f"Assistant: {assistant}\n" | |
prompt += f"User: {message}\nAssistant:" | |
outputs = pipe( | |
prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
response = outputs[0]["generated_text"][len(prompt):] | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |