import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from peft import PeftModel import torch import os """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # Set your model and adapter paths API_KEY = os.environ.get("ACESS_TOKEN") BASE_MODEL = "mistralai/Mistral-7B-v0.1" PEFT_ADAPTER = "asdc/Mistral-7B-multilingual-temporal-expression-normalization" tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL) base_model = AutoModelForCausalLM.from_pretrained( BASE_MODEL, torch_dtype=torch.float16, device_map="auto" token=API_KEY ) model = PeftModel.from_pretrained(base_model, PEFT_ADAPTER) pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, device_map="auto" ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): prompt = system_message + "\n" for user, assistant in history: if user: prompt += f"User: {user}\n" if assistant: prompt += f"Assistant: {assistant}\n" prompt += f"User: {message}\nAssistant:" outputs = pipe( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, pad_token_id=tokenizer.eos_token_id, ) response = outputs[0]["generated_text"][len(prompt):] yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()