File size: 3,018 Bytes
5a8c370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# from langchain_core.messages import HumanMessage, AIMessage
# from langgraph.graph import MessageGraph
# from langchain_core.runnables import RunnableLambda
# from langchain_core.messages import BaseMessage
# from langchain.tools import Tool
# from langchain_core.runnables import RunnableLambda, Runnable
# import re

# def create_agent(accent_tool_obj) -> 'Runnable':
#     accent_tool = Tool( 
#         name="AccentAnalyzer",
#         func=accent_tool_obj.analyze,
#         description="Analyze a public MP4 video URL and determine the English accent with transcription."
#     )

#     def analyze_node(messages: list[BaseMessage]) -> AIMessage:
#         last_input = messages[-1].content
#         match = re.search(r'https?://\S+', last_input)
#         if match:
#             url = match.group()
#             result = accent_tool.func(url)
#         else:
#             result = "No valid video URL found in your message."
#         return AIMessage(content=result)

#     graph = MessageGraph()
#     graph.add_node("analyze_accent", RunnableLambda(analyze_node))
#     graph.set_entry_point("analyze_accent")
#     graph.set_finish_point("analyze_accent")

#     return graph.compile()
#  --------------------------------------

from langchain_core.messages import BaseMessage, AIMessage
from langchain_core.runnables import RunnableLambda, Runnable
from langchain_community.llms import Ollama
from langchain.tools import Tool
from langgraph.graph import MessageGraph
import re

llm = Ollama(model="gemma3", temperature=0.0) # llama3.1

def create_agent(accent_tool_obj) -> tuple[Runnable, Runnable]:
    accent_tool = Tool(
        name="AccentAnalyzer",
        func=accent_tool_obj.analyze,
        description="Analyze a public MP4 video URL and determine the English accent with transcription."
    )

    def analyze_node(messages: list[BaseMessage]) -> AIMessage:
        last_input = messages[-1].content
        match = re.search(r'https?://\S+', last_input)
        if match:
            url = match.group()
            result = accent_tool.func(url)
        else:
            result = "No valid video URL found in your message."
        return AIMessage(content=result)

    graph = MessageGraph()
    graph.add_node("analyze_accent", RunnableLambda(analyze_node))
    graph.set_entry_point("analyze_accent")
    graph.set_finish_point("analyze_accent")
    analysis_agent = graph.compile()

    # Follow-up agent that uses transcript and responds to questions
    def follow_up_node(messages: list[BaseMessage]) -> AIMessage:
        user_question = messages[-1].content
        transcript = accent_tool_obj.last_transcript or ""
        prompt = f"""You are given this transcript of a video:

        \"\"\"{transcript}\"\"\"

        Now respond to the user's follow-up question: {user_question}
        """
        response = llm.invoke(prompt)
        return AIMessage(content=response)

    follow_up_agent = RunnableLambda(follow_up_node)

    return analysis_agent, follow_up_agent