File size: 1,813 Bytes
d429407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20cf0cb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
 from langchain_core.messages import BaseMessage, AIMessage
 from langchain_core.runnables import RunnableLambda, Runnable
 from langchain_community.llms import Ollama
 from langchain.tools import Tool
 from langgraph.graph import MessageGraph
 import re

 llm = Ollama(model="gemma3", temperature=0.0) # llama3.1

 def create_agent(accent_tool_obj) -> tuple[Runnable, Runnable]:
     accent_tool = Tool(
         name="AccentAnalyzer",
         func=accent_tool_obj.analyze,
         description="Analyze a public MP4 video URL and determine the English accent with transcription."
     )

     def analyze_node(messages: list[BaseMessage]) -> AIMessage:
         last_input = messages[-1].content
         match = re.search(r'https?://\S+', last_input)
         if match:
             url = match.group()
             result = accent_tool.func(url)
         else:
             result = "No valid video URL found in your message."
         return AIMessage(content=result)

     graph = MessageGraph()
     graph.add_node("analyze_accent", RunnableLambda(analyze_node))
     graph.set_entry_point("analyze_accent")
     graph.set_finish_point("analyze_accent")
     analysis_agent = graph.compile()

     # Follow-up agent that uses transcript and responds to questions
     def follow_up_node(messages: list[BaseMessage]) -> AIMessage:
         user_question = messages[-1].content
         transcript = accent_tool_obj.last_transcript or ""
         prompt = f"""You are given this transcript of a video:

         \"\"\"{transcript}\"\"\"

         Now respond to the user's follow-up question: {user_question}
         """
         response = llm.invoke(prompt)
         return AIMessage(content=response)

     follow_up_agent = RunnableLambda(follow_up_node)

     return analysis_agent, follow_up_agent