Spaces:
Running
Running
from langchain_core.messages import BaseMessage, AIMessage | |
from langchain_core.runnables import RunnableLambda, Runnable | |
from langchain_community.llms import Ollama | |
from langchain.tools import Tool | |
from langgraph.graph import MessageGraph | |
import re | |
llm = Ollama(model="gemma3:1b", temperature=0.0) # llama3.1 | |
def create_agent(accent_tool_obj) -> tuple[Runnable, Runnable]: | |
accent_tool = Tool( | |
name="AccentAnalyzer", | |
func=accent_tool_obj.analyze, | |
description="Analyze a public MP4 video URL and determine the English accent with transcription." | |
) | |
def analyze_node(messages: list[BaseMessage]) -> AIMessage: | |
last_input = messages[-1].content | |
match = re.search(r'https?://\S+', last_input) | |
if match: | |
url = match.group() | |
result = accent_tool.func(url) | |
else: | |
result = "No valid video URL found in your message." | |
return AIMessage(content=result) | |
graph = MessageGraph() | |
graph.add_node("analyze_accent", RunnableLambda(analyze_node)) | |
graph.set_entry_point("analyze_accent") | |
graph.set_finish_point("analyze_accent") | |
analysis_agent = graph.compile() | |
# Follow-up agent that uses transcript and responds to questions | |
def follow_up_node(messages: list[BaseMessage]) -> AIMessage: | |
user_question = messages[-1].content | |
transcript = accent_tool_obj.last_transcript or "" | |
prompt = f"""You are given this transcript of a video: | |
\"\"\"{transcript}\"\"\" | |
Now respond to the user's follow-up question: {user_question} | |
""" | |
response = llm.invoke(prompt) | |
return AIMessage(content=response) | |
follow_up_agent = RunnableLambda(follow_up_node) | |
return analysis_agent, follow_up_agent | |