accent-detection / streamlit_app.py
ash-171's picture
Update streamlit_app.py
b77eb8e verified
import streamlit as st
from src.tools.accent_tool import AccentAnalyzerTool
from src.app.main_agent import create_agent
from langchain_core.messages import HumanMessage, AIMessage
import re
import os
st.set_page_config(page_title="Accent Analyzer Agent", page_icon="💬", layout="centered")
st.warning("⚠️ High latency(~11min for 0:59s video) due to CPU usage. Once migrated to GPU, response time will improve significantly.")
st.title("English Accent Analyzer (Conversational)")
st.subheader("Ask me to analyze a video URL, e.g.: \n\n> *Analyze this video: https://github.com/ash-171/Data-mp4/raw/refs/heads/main/NWRNVTFlRGlnV0FfNDgwcA_out.mp4*")
@st.cache_resource
def load_tool_and_agent():
tool = AccentAnalyzerTool()
analysis_agent, follow_up_agent = create_agent(tool)
return tool, analysis_agent, follow_up_agent
accent_tool_obj, analysis_agent, follow_up_agent = load_tool_and_agent()
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if hasattr(accent_tool_obj, "last_transcript") and accent_tool_obj.last_transcript:
prompt_label = "Ask more about the video..."
input_key = "followup"
else:
prompt_label = "Paste your prompt here..."
input_key = "initial"
user_input = st.chat_input(prompt_label, key=input_key)
# Variable to defer assistant response
deferred_response = None
deferred_spinner_msg = ""
if user_input:
st.session_state.chat_history.append(HumanMessage(content=user_input))
if re.search(r'https?://\S+', user_input):
accent_tool_obj.last_transcript = ""
deferred_spinner_msg = "Analyzing new video..."
def run_agent():
return analysis_agent.invoke(st.session_state.chat_history)[-1].content
else:
deferred_spinner_msg = "Responding based on transcript..."
def run_agent():
return follow_up_agent.invoke(st.session_state.chat_history).content
# Run response generation inside spinner after chat is rendered
def process_response():
with st.spinner(deferred_spinner_msg):
try:
result = run_agent()
except Exception as e:
result = f"Error: {str(e)}"
st.session_state.chat_history.append(AIMessage(content=result))
st.rerun()
# Display full chat history (before running spinner)
for msg in st.session_state.chat_history:
with st.chat_message("user" if isinstance(msg, HumanMessage) else "assistant"):
st.markdown(msg.content)
# Only process response at the bottom, after chat is shown
if user_input:
process_response()