|
import streamlit as st |
|
import asyncio |
|
import tokonomics |
|
from utils import create_model_hierarchy |
|
|
|
st.set_page_config(page_title="LLM Pricing App", layout="wide") |
|
|
|
|
|
|
|
|
|
async def load_data(): |
|
"""Simulate loading data asynchronously.""" |
|
AVAILABLE_MODELS = await tokonomics.get_available_models() |
|
hierarchy = create_model_hierarchy(AVAILABLE_MODELS) |
|
FILTERED_MODELS = [] |
|
MODEL_PRICING = {} |
|
PROVIDERS = list(hierarchy.keys()) |
|
for provider in PROVIDERS: |
|
for model_family in hierarchy[provider]: |
|
for model_version in hierarchy[provider][model_family].keys(): |
|
for region in hierarchy[provider][model_family][model_version]: |
|
model_id = hierarchy[provider][model_family][model_version][region] |
|
MODEL_PRICING[model_id] = await tokonomics.get_model_costs(model_id) |
|
FILTERED_MODELS.append(model_id) |
|
return FILTERED_MODELS, MODEL_PRICING, PROVIDERS |
|
|
|
|
|
|
|
|
|
def provider_change(provider, selected_type, all_types=["text", "vision", "video", "image"]): |
|
"""Filter models based on the selected provider and type.""" |
|
all_models = st.session_state.get("models", []) |
|
new_models = [] |
|
others = [a_type for a_type in all_types if selected_type != a_type] |
|
for model_name in all_models: |
|
if provider in model_name: |
|
if selected_type in model_name: |
|
new_models.append(model_name) |
|
elif any(other in model_name for other in others): |
|
continue |
|
else: |
|
new_models.append(model_name) |
|
return new_models if new_models else all_models |
|
|
|
|
|
|
|
|
|
def estimate_cost(num_alerts, input_size, output_size, model_id): |
|
pricing = st.session_state.get("pricing", {}) |
|
cost_token = pricing.get(model_id) |
|
if not cost_token: |
|
return "NA" |
|
input_tokens = round(input_size * 1.3) |
|
output_tokens = round(output_size * 1.3) |
|
price_day = cost_token.get("input_cost_per_token", 0) * input_tokens + cost_token.get("output_cost_per_token", 0) * output_tokens |
|
price_total = price_day * num_alerts |
|
return f"""## Estimated Cost: |
|
|
|
Day Price: {price_total:0.2f} USD |
|
Month Price: {price_total * 31:0.2f} USD |
|
Year Price: {price_total * 365:0.2f} USD |
|
""" |
|
|
|
|
|
|
|
|
|
if "data_loaded" not in st.session_state: |
|
with st.spinner("Loading pricing data..."): |
|
models, pricing, providers = asyncio.run(load_data()) |
|
st.session_state["models"] = models |
|
st.session_state["pricing"] = pricing |
|
st.session_state["providers"] = providers |
|
st.session_state["data_loaded"] = True |
|
|
|
|
|
|
|
|
|
with st.sidebar: |
|
st.image("https://cdn.prod.website-files.com/630f558f2a15ca1e88a2f774/631f1436ad7a0605fecc5e15_Logo.svg", use_container_width=True) |
|
st.divider() |
|
st.sidebar.title("LLM Pricing Calculator") |
|
|
|
|
|
|
|
|
|
|
|
tab1, tab2 = st.tabs(["Model Selection", "About"]) |
|
|
|
with tab1: |
|
st.header("LLM Pricing App") |
|
|
|
|
|
col_left, col_right = st.columns(2) |
|
with col_left: |
|
selected_provider = st.selectbox("Select a provider", st.session_state["providers"]) |
|
selected_type = st.radio("Select type", options=["text", "image"], index=0) |
|
with col_right: |
|
|
|
filtered_models = provider_change(selected_provider, selected_type) |
|
if filtered_models: |
|
selected_model = st.selectbox("Select a model", options=filtered_models) |
|
else: |
|
selected_model = None |
|
st.write("No models available") |
|
|
|
|
|
col1, col2, col3 = st.columns(3) |
|
with col1: |
|
num_alerts = st.number_input( |
|
"Security Alerts Per Day", |
|
value=100, |
|
min_value=1, |
|
step=1, |
|
help="Number of security alerts to analyze daily" |
|
) |
|
with col2: |
|
input_size = st.number_input( |
|
"Alert Content Size (characters)", |
|
value=1000, |
|
min_value=1, |
|
step=1, |
|
help="Include logs, metadata, and context per alert" |
|
) |
|
with col3: |
|
output_size = st.number_input( |
|
"Analysis Output Size (characters)", |
|
value=500, |
|
min_value=1, |
|
step=1, |
|
help="Expected length of security analysis and recommendations" |
|
) |
|
|
|
|
|
btn_col1, btn_col2 = st.columns(2) |
|
with btn_col1: |
|
if st.button("Estimate"): |
|
if selected_model: |
|
st.session_state["result"] = estimate_cost(num_alerts, input_size, output_size, selected_model) |
|
else: |
|
st.session_state["result"] = "No model selected." |
|
with btn_col2: |
|
if st.button("Refresh Pricing Data"): |
|
with st.spinner("Refreshing pricing data..."): |
|
models, pricing, providers = asyncio.run(load_data()) |
|
st.session_state["models"] = models |
|
st.session_state["pricing"] = pricing |
|
st.session_state["providers"] = providers |
|
st.success("Pricing data refreshed!") |
|
|
|
st.divider() |
|
|
|
st.markdown("### Results") |
|
if "result" in st.session_state: |
|
st.write(st.session_state["result"]) |
|
else: |
|
st.write("Use the buttons above to estimate costs.") |
|
|
|
|
|
if st.button("Clear"): |
|
st.session_state.pop("result", None) |
|
st.rerun() |
|
|
|
with tab2: |
|
st.markdown( |
|
""" |
|
## About This App |
|
|
|
This is based on the tokonomics package. |
|
|
|
- The app downloads the latest pricing from the LiteLLM repository. |
|
- Using simple maths to estimate the total tokens. |
|
- Version 0.1 |
|
|
|
Website: [https://www.priam.ai](https://www.priam.ai) |
|
""" |
|
) |
|
|