ash-98 commited on
Commit
3548bcc
·
1 Parent(s): 67137a1

About section enhanced

Browse files
Files changed (1) hide show
  1. app.py +24 -19
app.py CHANGED
@@ -4,11 +4,12 @@ import tokonomics
4
  from utils import create_model_hierarchy
5
  from utils_on import analyze_hf_model # New import for On Premise Estimator functionality
6
 
7
- st.set_page_config(page_title="LLM Pricing App", layout="wide")
8
 
9
  # --------------------------
10
  # Async Data Loading Function
11
  # --------------------------
 
12
  async def load_data():
13
  """Simulate loading data asynchronously."""
14
  AVAILABLE_MODELS = await tokonomics.get_available_models()
@@ -123,16 +124,16 @@ def format_analysis_report(analysis_result: dict) -> str:
123
  lines.append("- None found")
124
  lines.append(f"\n**Largest Compatible GPU:** {analysis_result.get('largest_compatible_gpu', 'N/A')}\n")
125
 
126
- gpu_perf = analysis_result.get("gpu_performance", {})
127
- if gpu_perf:
128
- lines.append("#### GPU Performance:")
129
- for gpu, perf in gpu_perf.items():
130
- lines.append(f"**{gpu}:**")
131
- lines.append(f" - Tokens per Second: {perf.get('tokens_per_second', 0):.2f}")
132
- lines.append(f" - FLOPs per Token: {perf.get('flops_per_token', 0):.2f}")
133
- lines.append(f" - Effective TFLOPS: {perf.get('effective_tflops', 0):.2f}\n")
134
- else:
135
- lines.append("#### GPU Performance: N/A\n")
136
 
137
  return "\n".join(lines)
138
 
@@ -203,7 +204,7 @@ elif page == "On Premise Estimator":
203
  st.divider()
204
  st.header("On Premise Estimator")
205
  st.markdown("Enter a Hugging Face model ID to perform an on premise analysis using the provided estimator.")
206
- hf_model_id = st.text_input("Hugging Face Model ID", value="facebook/opt-1.3b")
207
 
208
  if st.button("Analyze Model"):
209
  with st.spinner("Analyzing model..."):
@@ -225,7 +226,7 @@ elif page == "About":
225
  - The app downloads the latest pricing from the LiteLLM repository.
226
  - Using simple maths to estimate the total tokens.
227
  - Helps you estimate hardware requirements for running open-source large language models (LLMs) on-premise using only the model ID from Hugging Face.
228
- - Version 0.1
229
 
230
  ---
231
 
@@ -233,8 +234,9 @@ elif page == "About":
233
 
234
  | Version | Release Date | Key Feature Updates |
235
  |--------|--------------|---------------------|
 
236
  | `v1.0` | 2025-03-26 | Initial release with basic total tokens estimation |
237
- | `v1.1` | 2025-04-06 | Added On Premise Estimator Tab |
238
 
239
  ---
240
 
@@ -242,9 +244,12 @@ elif page == "About":
242
  """
243
  )
244
  st.markdown(
245
- """
246
- ### Disclaimer
 
 
 
 
 
 
247
 
248
- This app is for demonstration purposes only. Actual costs may vary based on usage patterns and other factors.
249
- """
250
- )
 
4
  from utils import create_model_hierarchy
5
  from utils_on import analyze_hf_model # New import for On Premise Estimator functionality
6
 
7
+ st.set_page_config(page_title="LLM Pricing Calculator", layout="wide")
8
 
9
  # --------------------------
10
  # Async Data Loading Function
11
  # --------------------------
12
+
13
  async def load_data():
14
  """Simulate loading data asynchronously."""
15
  AVAILABLE_MODELS = await tokonomics.get_available_models()
 
124
  lines.append("- None found")
125
  lines.append(f"\n**Largest Compatible GPU:** {analysis_result.get('largest_compatible_gpu', 'N/A')}\n")
126
 
127
+ #gpu_perf = analysis_result.get("gpu_performance", {})
128
+ #if gpu_perf:
129
+ # lines.append("#### GPU Performance:")
130
+ # for gpu, perf in gpu_perf.items():
131
+ # lines.append(f"**{gpu}:**")
132
+ # lines.append(f" - Tokens per Second: {perf.get('tokens_per_second', 0):.2f}")
133
+ # lines.append(f" - FLOPs per Token: {perf.get('flops_per_token', 0):.2f}")
134
+ # lines.append(f" - Effective TFLOPS: {perf.get('effective_tflops', 0):.2f}\n")
135
+ #else:
136
+ # lines.append("#### GPU Performance: N/A\n")
137
 
138
  return "\n".join(lines)
139
 
 
204
  st.divider()
205
  st.header("On Premise Estimator")
206
  st.markdown("Enter a Hugging Face model ID to perform an on premise analysis using the provided estimator.")
207
+ hf_model_id = st.text_input("Hugging Face Model ID", value="meta-llama/Llama-4-Scout-17B-16E")
208
 
209
  if st.button("Analyze Model"):
210
  with st.spinner("Analyzing model..."):
 
226
  - The app downloads the latest pricing from the LiteLLM repository.
227
  - Using simple maths to estimate the total tokens.
228
  - Helps you estimate hardware requirements for running open-source large language models (LLMs) on-premise using only the model ID from Hugging Face.
229
+ - Latest Version 0.1
230
 
231
  ---
232
 
 
234
 
235
  | Version | Release Date | Key Feature Updates |
236
  |--------|--------------|---------------------|
237
+ | `v1.1` | 2025-04-06 | Added On Premise Estimator Feature |
238
  | `v1.0` | 2025-03-26 | Initial release with basic total tokens estimation |
239
+
240
 
241
  ---
242
 
 
244
  """
245
  )
246
  st.markdown(
247
+ """
248
+ ### Found a Bug?
249
+
250
+ If you encounter any issues or have feedback, please email to **[email protected]**
251
+
252
+ Your input helps us improve the app!
253
+ """
254
+ )
255