Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
|
4 |
+
from fastapi import FastAPI
|
5 |
+
from pydantic import BaseModel
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
+
|
8 |
+
# 1. Load model & tokenizer once at startup
|
9 |
+
MODEL_ID = "EQuIP-Queries/EQuIP_3B"
|
10 |
+
# Specify cache_dir just in case
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
|
13 |
+
|
14 |
+
# 2. Initialize FastAPI
|
15 |
+
app = FastAPI()
|
16 |
+
|
17 |
+
# 3. Define request schema
|
18 |
+
class GenerateRequest(BaseModel):
|
19 |
+
prompt: str
|
20 |
+
max_new_tokens: int = 50
|
21 |
+
|
22 |
+
# 4. Inference endpoint
|
23 |
+
@app.post("/generate")
|
24 |
+
async def generate(req: GenerateRequest):
|
25 |
+
inputs = tokenizer(req.prompt, return_tensors="pt")
|
26 |
+
ids = model.generate(**inputs, max_new_tokens=req.max_new_tokens)
|
27 |
+
text = tokenizer.decode(ids[0], skip_special_tokens=True)
|
28 |
+
return {"generated_text": text}
|