Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# π¦ Installations needed locally before deploying:
|
2 |
+
# Linux: sudo apt install tesseract-ocr poppler-utils
|
3 |
+
# Windows: Install Tesseract from https://github.com/tesseract-ocr/tesseract
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
from pdf2image import convert_from_path
|
7 |
+
from PIL import Image
|
8 |
+
import pytesseract
|
9 |
+
import torch
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
11 |
+
|
12 |
+
# Load MedAlpaca Model from Hugging Face
|
13 |
+
model_name = "medalpaca/medalpaca-7b"
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
model.to(device)
|
18 |
+
|
19 |
+
# ========== OCR FUNCTIONS ==========
|
20 |
+
|
21 |
+
def extract_text_from_image(image):
|
22 |
+
return pytesseract.image_to_string(image)
|
23 |
+
|
24 |
+
def extract_text_from_pdf(pdf_file):
|
25 |
+
try:
|
26 |
+
images = convert_from_path(pdf_file.name)
|
27 |
+
text = ""
|
28 |
+
for page in images:
|
29 |
+
text += pytesseract.image_to_string(page) + "\n"
|
30 |
+
return text
|
31 |
+
except Exception as e:
|
32 |
+
return f"Error reading PDF: {e}"
|
33 |
+
|
34 |
+
# ========== MEDALPACA RESPONSE ==========
|
35 |
+
|
36 |
+
def generate_medical_explanation(text):
|
37 |
+
prompt = (
|
38 |
+
"You are a helpful medical assistant. Analyze the following patient's lab report text "
|
39 |
+
"and explain the abnormalities in plain, non-technical language:\n\n" + text +
|
40 |
+
"\n\nAlso, highlight abnormal values with flags."
|
41 |
+
)
|
42 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
43 |
+
outputs = model.generate(**inputs, max_new_tokens=512, do_sample=True, temperature=0.7)
|
44 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
45 |
+
return result.split(prompt)[-1].strip()
|
46 |
+
|
47 |
+
# ========== MAIN APP FUNCTION ==========
|
48 |
+
|
49 |
+
def analyze_file(file):
|
50 |
+
if not file:
|
51 |
+
return "β οΈ No file uploaded.", ""
|
52 |
+
|
53 |
+
filename = file.name.lower()
|
54 |
+
if filename.endswith(".pdf"):
|
55 |
+
extracted_text = extract_text_from_pdf(file)
|
56 |
+
else:
|
57 |
+
try:
|
58 |
+
img = Image.open(file.name)
|
59 |
+
extracted_text = extract_text_from_image(img)
|
60 |
+
except Exception as e:
|
61 |
+
return f"β Error loading image: {e}", ""
|
62 |
+
|
63 |
+
if not extracted_text.strip():
|
64 |
+
return "β No text found. Try uploading a clearer image or PDF.", ""
|
65 |
+
|
66 |
+
ai_response = generate_medical_explanation(extracted_text)
|
67 |
+
return extracted_text, ai_response
|
68 |
+
|
69 |
+
# ========== GRADIO INTERFACE ==========
|
70 |
+
|
71 |
+
gr.Interface(
|
72 |
+
fn=analyze_file,
|
73 |
+
inputs=gr.File(label="π Upload Lab Report (Image or PDF)"),
|
74 |
+
outputs=[
|
75 |
+
gr.Textbox(label="π Extracted Text", lines=20),
|
76 |
+
gr.Textbox(label="π§ MedAlpaca Interpretation", lines=20)
|
77 |
+
],
|
78 |
+
title="π¬ AI Lab Report Analyzer with MedAlpaca",
|
79 |
+
description="Upload your medical report (image or PDF). This app extracts text using OCR and explains lab values using the MedAlpaca model."
|
80 |
+
).launch()
|