File size: 12,209 Bytes
20f2352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
"""
Enhanced RAG (Retrieval-Augmented Generation) System
for Power Systems Knowledge Base
"""

import json
import re
from typing import Dict, List, Tuple, Optional
import pandas as pd
from datetime import datetime
import os

class EnhancedRAGSystem:
    """
    Advanced RAG system with semantic search and context ranking
    """
    
    def __init__(self, knowledge_base_path: str = 'data/knowledge_base.json'):
        self.knowledge_base_path = knowledge_base_path
        self.knowledge_base = self.load_knowledge_base()
        self.indexed_content = self.create_search_index()
        
    def load_knowledge_base(self) -> Dict:
        """Load the power systems knowledge base"""
        try:
            with open(self.knowledge_base_path, 'r', encoding='utf-8') as f:
                return json.load(f)
        except FileNotFoundError:
            print(f"Knowledge base not found at {self.knowledge_base_path}")
            return self.get_fallback_knowledge_base()
    
    def get_fallback_knowledge_base(self) -> Dict:
        """Fallback knowledge base if file is not found"""
        return {
            "faults": {
                "symmetrical": "Three-phase faults with balanced conditions",
                "unsymmetrical": "Single-phase or two-phase faults"
            },
            "protection": {
                "overcurrent": "Current-based protection schemes",
                "differential": "Current comparison protection"
            }
        }
    
    def create_search_index(self) -> List[Dict]:
        """Create searchable index from knowledge base"""
        indexed_items = []
        
        def index_recursive(data, path="", category=""):
            if isinstance(data, dict):
                for key, value in data.items():
                    current_path = f"{path}.{key}" if path else key
                    current_category = category or key
                    
                    if isinstance(value, (str, int, float)):
                        indexed_items.append({
                            'path': current_path,
                            'category': current_category,
                            'key': key,
                            'content': str(value),
                            'keywords': self.extract_keywords(f"{key} {value}")
                        })
                    else:
                        index_recursive(value, current_path, current_category)
            elif isinstance(data, list):
                for i, item in enumerate(data):
                    index_recursive(item, f"{path}[{i}]", category)
        
        index_recursive(self.knowledge_base)
        return indexed_items
    
    def extract_keywords(self, text: str) -> List[str]:
        """Extract keywords from text for better matching"""
        # Convert to lowercase and split
        words = re.findall(r'\b\w+\b', text.lower())
        
        # Remove common stop words
        stop_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 
                     'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were'}
        
        keywords = [word for word in words if word not in stop_words and len(word) > 2]
        return keywords
    
    def semantic_search(self, query: str, top_k: int = 5) -> List[Dict]:
        """Perform semantic search on the knowledge base"""
        query_keywords = self.extract_keywords(query)
        scored_results = []
        
        for item in self.indexed_content:
            score = self.calculate_relevance_score(query_keywords, item)
            if score > 0:
                scored_results.append({
                    **item,
                    'relevance_score': score,
                    'matched_keywords': self.get_matched_keywords(query_keywords, item['keywords'])
                })
        
        # Sort by relevance score
        scored_results.sort(key=lambda x: x['relevance_score'], reverse=True)
        return scored_results[:top_k]
    
    def calculate_relevance_score(self, query_keywords: List[str], item: Dict) -> float:
        """Calculate relevance score between query and item"""
        item_keywords = item['keywords']
        item_text = f"{item['key']} {item['content']}".lower()
        
        score = 0.0
        
        # Exact keyword matches
        for keyword in query_keywords:
            if keyword in item_keywords:
                score += 2.0
            elif keyword in item_text:
                score += 1.0
        
        # Category boost for relevant topics
        category_boost = {
            'fault': 1.5, 'protection': 1.5, 'standard': 1.3, 
            'power': 1.2, 'analysis': 1.2, 'calculation': 1.3
        }
        
        for boost_term, boost_value in category_boost.items():
            if boost_term in item['category'].lower():
                for keyword in query_keywords:
                    if boost_term in keyword:
                        score *= boost_value
                        break
        
        # Length normalization
        if len(item_keywords) > 0:
            score = score / (1 + len(item_keywords) * 0.1)
        
        return score
    
    def get_matched_keywords(self, query_keywords: List[str], item_keywords: List[str]) -> List[str]:
        """Get keywords that matched between query and item"""
        return [kw for kw in query_keywords if kw in item_keywords]
    
    def retrieve_context(self, query: str, max_context_length: int = 1000) -> str:
        """Retrieve relevant context for the query"""
        relevant_items = self.semantic_search(query, top_k=10)
        
        if not relevant_items:
            return "No specific context found in knowledge base."
        
        context_parts = []
        total_length = 0
        
        for item in relevant_items:
            context_part = f"**{item['category']} - {item['key']}**: {item['content']}"
            
            if total_length + len(context_part) < max_context_length:
                context_parts.append(context_part)
                total_length += len(context_part)
            else:
                break
        
        return "\n\n".join(context_parts)
    
    def get_topic_overview(self, topic: str) -> str:
        """Get comprehensive overview of a specific topic"""
        topic_items = []
        
        for item in self.indexed_content:
            if topic.lower() in item['category'].lower() or topic.lower() in item['key'].lower():
                topic_items.append(item)
        
        if not topic_items:
            return f"No information found for topic: {topic}"
        
        # Group by category
        categories = {}
        for item in topic_items:
            category = item['category']
            if category not in categories:
                categories[category] = []
            categories[category].append(item)
        
        overview_parts = []
        for category, items in categories.items():
            overview_parts.append(f"## {category.title()}")
            for item in items[:5]:  # Limit items per category
                overview_parts.append(f"- **{item['key']}**: {item['content'][:200]}...")
        
        return "\n".join(overview_parts)
    
    def suggest_related_topics(self, query: str) -> List[str]:
        """Suggest related topics based on the query"""
        relevant_items = self.semantic_search(query, top_k=15)
        categories = set()
        
        for item in relevant_items:
            categories.add(item['category'])
        
        return list(categories)[:5]
    
    def get_formulas_for_topic(self, topic: str) -> List[str]:
        """Extract formulas related to a specific topic"""
        formulas = []
        
        # Search in formulas section
        if 'formulas' in self.knowledge_base:
            formulas_data = self.knowledge_base['formulas']
            for category, formulas_dict in formulas_data.items():
                if topic.lower() in category.lower():
                    if isinstance(formulas_dict, dict):
                        for formula_name, formula in formulas_dict.items():
                            formulas.append(f"**{formula_name}**: {formula}")
        
        # Search in general content for formula patterns
        formula_patterns = [
            r'[A-Z]_[a-z]+ = [^.]+',
            r'[A-Z] = [^.]+',
            r'I_fault = [^.]+',
            r'V_[a-z]+ = [^.]+',
            r'Z_[a-z]+ = [^.]+',
            r'P = [^.]+',
            r'Q = [^.]+',
        ]
        
        for item in self.indexed_content:
            if topic.lower() in item['content'].lower():
                for pattern in formula_patterns:
                    matches = re.findall(pattern, item['content'])
                    formulas.extend(matches)
        
        return list(set(formulas))[:10]  # Remove duplicates and limit
    
    def update_knowledge_base(self, new_data: Dict, category: str):
        """Update knowledge base with new information"""
        if category in self.knowledge_base:
            self.knowledge_base[category].update(new_data)
        else:
            self.knowledge_base[category] = new_data
        
        # Recreate search index
        self.indexed_content = self.create_search_index()
        
        # Save updated knowledge base
        try:
            with open(self.knowledge_base_path, 'w', encoding='utf-8') as f:
                json.dump(self.knowledge_base, f, indent=2)
        except Exception as e:
            print(f"Error saving knowledge base: {e}")
    
    def get_statistics(self) -> Dict:
        """Get statistics about the knowledge base"""
        stats = {
            'total_entries': len(self.indexed_content),
            'categories': len(set(item['category'] for item in self.indexed_content)),
            'total_keywords': sum(len(item['keywords']) for item in self.indexed_content),
            'last_updated': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
        }
        
        # Category breakdown
        category_counts = {}
        for item in self.indexed_content:
            category = item['category']
            category_counts[category] = category_counts.get(category, 0) + 1
        
        stats['category_breakdown'] = category_counts
        return stats
    
    def export_context_report(self, query: str, filename: str = None) -> str:
        """Export detailed context report for a query"""
        if filename is None:
            timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
            filename = f"context_report_{timestamp}.md"
        
        relevant_items = self.semantic_search(query, top_k=20)
        
        report_content = f"""# Context Report for Query: "{query}"

Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}

## Search Results ({len(relevant_items)} items found)

"""
        
        for i, item in enumerate(relevant_items, 1):
            report_content += f"""### {i}. {item['category']} - {item['key']}
- **Content**: {item['content']}
- **Relevance Score**: {item['relevance_score']:.2f}
- **Matched Keywords**: {', '.join(item['matched_keywords'])}

"""
        
        # Save report
        try:
            with open(filename, 'w', encoding='utf-8') as f:
                f.write(report_content)
            return f"Context report saved to {filename}"
        except Exception as e:
            return f"Error saving report: {e}"

# Example usage and testing
if __name__ == "__main__":
    # Test the RAG system
    rag = EnhancedRAGSystem()
    
    # Test queries
    test_queries = [
        "fault analysis",
        "IEEE standards",
        "protection systems",
        "short circuit calculation",
        "transformer protection"
    ]
    
    for query in test_queries:
        print(f"\nQuery: {query}")
        context = rag.retrieve_context(query)
        print(f"Context: {context[:200]}...")
        
        related_topics = rag.suggest_related_topics(query)
        print(f"Related topics: {related_topics}")
    
    # Print statistics
    stats = rag.get_statistics()
    print(f"\nKnowledge Base Statistics:")
    for key, value in stats.items():
        print(f"  {key}: {value}")