RAD / app.py
ashishtanwer's picture
Create app.py
e0b9f39
raw
history blame
1.42 kB
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline, DDIMScheduler
from IPython.display import display
model_path = WEIGHTS_DIR # If you want to use previously trained model saved in gdrive, replace this with the full path of model in gdrive
pipe = StableDiffusionPipeline.from_pretrained(model_path, safety_checker=None, torch_dtype=torch.float16).to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
g_cuda = None
#@markdown Can set random seed here for reproducibility.
g_cuda = torch.Generator(device='cuda')
seed = 52362 #@param {type:"number"}
g_cuda.manual_seed(seed)
#@title Run for generating images.
prompt = "photo of zwx dog in a bucket" #@param {type:"string"}
negative_prompt = "" #@param {type:"string"}
num_samples = 4 #@param {type:"number"}
guidance_scale = 7.5 #@param {type:"number"}
num_inference_steps = 24 #@param {type:"number"}
height = 512 #@param {type:"number"}
width = 512 #@param {type:"number"}
with autocast("cuda"), torch.inference_mode():
images = pipe(
prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
num_images_per_prompt=num_samples,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=g_cuda
).images
for img in images:
display(img)